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Abstract
In this paper, we deal with the class of unconstrained multi-objective optimization
problems. In this setting we introduce, for the first time in the literature, a Lim-
ited Memory Quasi-Newton type method, which is well suited especially in large
scale scenarios. The proposed algorithm approximates, through a suitable positive
definite matrix, the convex combination of the Hessian matrices of the objectives;
the update formula for the approximation matrix can be seen as an extension of the
one used in the popular L-BFGS method for scalar optimization. Equipped with a
Wolfe type line search, the considered method is proved to be well defined even in
the nonconvex case. Furthermore, for twice continuously differentiable strongly con-
vex problems, we state global and R-linear convergence to Pareto optimality of the
sequence of generated points. The performance of the new algorithm is empirically
assessed by a thorough computational comparison with state-of-the-art Newton and
Quasi-Newton approaches from themulti-objective optimization literature. The results
of the experiments highlight that the proposed approach is generally efficient and effec-
tive, outperforming the competitors in most settings. Moreover, the use of the limited
memory method results to be beneficial within a global optimization framework for
Pareto front approximation.
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1 Introduction

Multi-Objective Optimization (MOO) is a mathematical tool which has proved to
be particularly well suited for many real-world problems over the years. Particular
relevance of this framework is demonstrated, for example, by applications in statistics
[1], design [2], engineering [3, 4], management science [5], space exploration [6].
The principal complexity that makes MOO problems difficult to handle is the general
impossibility to reach a solutionminimizing all the objective functions simultaneously.
In this context, the definitions of optimality (global, local and stationarity) are based on
Pareto’s theory. The latter has complexity elements that make it difficult the creation
of new methods and optimization processes.

A class of MOO methods that has been widely studied for the past two decades is
the one concerning descent algorithms (either first-order, second-order and derivative-
free). These approaches are basically extensions of the classical iterative scalar
optimization algorithms. Steepest Descent [7], Newton [8, 9], Quasi-Newton [10],
Augmented Lagrangian [11], Conjugate Gradient [12] are only a few methods of this
family. In addition to having theoretically relevant convergence properties, these algo-
rithms, when used on problems with reasonable regularity assumptions, proved to be
valid alternatives to the scalarization approaches [13] and the evolutionary ones [14],
especially as the problem size grows [15, 16]. In recent years, some of the descent
methods were also extended to generate approximations of the Pareto front, instead
of a single Pareto-stationary solution [15–18]. Moreover, following ideas developed
for scalar optimization [19, 20], descent methods have also been used as local search
procedures within memetic algorithms [21].

Quasi-Newton methods are among the most popular algorithms for unconstrained
single-objective optimization. Based on a quadratic model of the objective function,
they do not require the calculation of the second derivatives in order to find the search
direction: the real Hessian is replaced by an approximation matrix, which is updated
at each iteration considering the new generated solution and the previous one. The
most famous update formula for the approximation matrix is the BFGS one, which
is named after Broyden, Fletcher, Goldfarb and Shanno [22]. In the multi-objective
setting, Quasi-Newton methods were proposed, for instance, in [10, 23–25].

Among the factors contributing to the success of Quasi-Newton methods in scalar
optimization, the possibility of defining limited-memory variants of these approaches
certainly stands out. The approximate Hessian matrix can in fact be roughly recov-
ered only using a finite number M of previously generated solutions. In this way, its
management in memory, which could be extremely inefficient and time-consuming,
is avoided. In particular, the L-BFGS algorithm, firstly designed in [26], has man-
aged over the years to achieve state-of-the-art performance in most settings, even with
relatively small values for M .

This work concerns, to the best of our knowledge, the first attempt in the literature
to define a multi-objective limited memory Quasi-Newton method. The key elements
that characterize the proposed approach are:

(i) a shared approximation of the Hessian matrices is employed to compute the
search direction;

123



A limited memory Quasi-Newton approach for… 35

(ii) the Hessian matrix approximation only requires information related to the most
recent iterations to be computed;

(iii) the method is in general well defined and, in the strongly convex case, is shown
to possess R-linear global convergence properties to Pareto optimality.

The rest of the manuscript is organized as follows. In Sect. 2, we recall the main
concepts related to MOOQuasi-Newton methods. In Sect. 3, we provide a description
of the proposed limited memory Quasi-Newton approach; we then provide the conver-
gence analysis in Sect. 4. In Sect. 5, we show through computational experiments the
good performance of the limited memory approach w.r.t. main state-of-the-art Newton
and Quasi-Newton methods. Moreover, in this section we show the performance of
the new approach used as local search procedure in a global optimization method.
Finally, in Sect. 6 we provide some concluding remarks.

2 Preliminaries

In this work, we consider the following unconstrained multi-objective optimization
problem:

min
x∈Rn

F (x) = ( f1 (x) , . . . , fm (x))T , (1)

where F : R
n → R

m is a continuously differentiable function. We denote by JF (·) =
(∇ f1(·), . . . ,∇ fm(·))T ∈ R

m×n the Jacobian matrix associated with F . Moreover,
for all j ∈ {1, . . . ,m}, the Hessian matrix of the function f j (·), when it exists, is
denoted by ∇2 f j (·). In what follows, the Euclidean norm in R

n will be denoted by
‖·‖.

Since we are in a multi-objective setting, we need a partial ordering in R
m : consid-

ering two points u, v ∈ R
m , we have that

u < v ⇐⇒ ui < vi , ∀i = 1, . . . ,m,

u ≤ v ⇐⇒ ui ≤ vi , ∀i = 1, . . . ,m.

We can say that u dominates v if u ≤ v and u 
= v. In this case, we use the following
notation: u � v. Similarly, we state that x ∈ R

n dominates y ∈ R
n w.r.t. F if

F(x) � F(y).
In multi-objective optimization, a point minimizing all the objectives at once is

unlikely to exist. For this reason, the concepts of optimality are based on Pareto’s
theory.

Definition 1 A point x̄ ∈ R
n is Pareto optimal for problem (1) if there does not exist

y ∈ R
n such that F(y) � F(x̄). If there exists a neighborhood N (x̄) in which the

previous property holds, then x̄ is locally Pareto optimal.

Since Pareto optimality is a strong property, it is hard to attain in practice. A slightly
more affordable condition is weak Pareto optimality.
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36 M. Lapucci, P. Mansueto

Definition 2 A point x̄ ∈ R
n is weakly Pareto optimal for problem (1) if there does

not exist y ∈ R
n such that F(y) < F(x̄). If there exists a neighborhood N (x̄) in

which the previous property holds, then x̄ is locally weakly Pareto optimal.

We define the Pareto set as the set of all the Pareto optimal solutions. Moreover, we
refer to the image of the Pareto set w.r.t. F as the Pareto front.

We can now introduce the concept of Pareto stationarity. Under differentiability
assumptions, this condition is necessary for all types of Pareto optimality. Moreover,
assuming the convexity of the objective functions in problem (1), Pareto stationarity
is also a sufficient condition for Pareto optimality.

Definition 3 A point x̄ ∈ R
n is Pareto-stationary for problem (1) if we have that

min
d∈Rn

max
j=1,...,m

∇ f j (x̄)
T d = 0.

The concepts of Pareto stationarity, Pareto optimality and convexity are related
according to the following lemma.

Lemma 1 ([8, Theorem 3.1]) The following statements hold:

(i) if x̄ is locally weakly Pareto optimal, then x̄ is Pareto-stationary for problem (1);
(ii) if F is convex and x̄ is Pareto-stationary for problem (1), then x̄ is weakly Pareto

optimal;
(iii) if F is twice continuously differentiable, ∇2 f j (x) � 0 for all j ∈ {1, . . . ,m}

and all x ∈ R
n, and x̄ is Pareto-stationary for problem (1), then x̄ is Pareto

optimal.

Lastly, we introduce a relaxation of Pareto stationarity, called ε-Pareto-stationarity.
This concept is firstly introduced in [11]: here, we propose a slightly modified version.

Definition 4 Let ε ≥ 0. A point x̄ ∈ R
n is ε-Pareto-stationary for problem (1) if

min
d∈Rn

max
j=1,...,m

∇ f j (x̄)
T d + 1

2
‖d‖2 ≥ −ε.

In the following, we briefly review the basic concepts for Quasi-Newton algorithms
in multi-objective optimization.

2.1 Quasi-Newtonmethods

If a point x̄ ∈ R
n is not Pareto-stationary, then there exists a descent direction w.r.t.

all the objectives. The Quasi-Newton direction can be introduced as the solution of
the following problem [10]:

min
d∈Rn

max
j=1,...,m

∇ f j (x̄)
T d + 1

2
dT B jd, (2)
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A limited memory Quasi-Newton approach for… 37

where Bj ∈ R
n×n , with j ∈ {1, . . . ,m}, approximates the second derivatives

∇2 f j (x̄). If the approximation matrices are positive definite, i.e., Bj � 0 ∀ j ∈
{1, . . . ,m}, then the function ∇ f j (x̄)T d + (1/2) dT B jd is strongly convex for each
j ∈ {1, . . . ,m}. In this case, problem (2) has a unique minimizer: we denote it by
dQN (x̄). We also indicate with θQN (x̄) the optimal value of problem (2) at x̄ . It is
trivial to observe that θQN (x) ≤ 0 for any x ∈ R

n . If x̄ is Pareto-stationary, then
θQN (x̄) = 0.

As in [24], we introduce the function D : R
n × R

n → R, defined by

D(x, d) = max
j=1,...,m

∇ f j (x)
T d.

Any direction d such that D(x̄, d) < 0 is a descent direction at x̄ for F . Moreover,
the function D(·, ·) has some properties, which we report in the next lemma.

Lemma 2 ([24, Lemma 2.2]) The following statements hold:

1. for any x ∈ R
n and α ≥ 0, we have D(x, αd) = αD(x, d).

2. the mapping (x, d) → D(x, d) is continuous.

As we thoroughly recall in Appendix A.1, the Lagrangian dual problem of (2) is
given by:

max
λ∈Rm

− 1

2
λT JF (x̄)

⎡
⎣

m∑
j=1

λ j B j

⎤
⎦

−1

JF (x̄)T λ

s.t.
m∑
j=1

λ j = 1, λ ≥ 0.

(3)

Regarding problems (2) and (3), strong duality holds and the Karush-Kuhn-Tucker
conditions are sufficient and necessary for optimality. Moreover, denoting by

λQN (x̄) =
(
λ
QN
1 (x̄) , . . . , λ

QN
m (x̄)

)T
the optimal Lagrange multipliers vector, we

have that

m∑
j=1

λ
QN
j (x̄) = 1, λQN (x̄) ≥ 0 (4)

and

dQN (x̄) = −
⎡
⎣

m∑
j=1

λ
QN
j (x̄) Bj

⎤
⎦

−1

JF (x̄)T λ. (5)

Due to the presence of the inverse of the convex combination of the approximation

matrices, i.e.,
[∑m

j=1 λ j B j

]−1
, problem (3) is difficult to solve.

123



38 M. Lapucci, P. Mansueto

If, for all j ∈ {1, . . . ,m}, Bj = I , where I ∈ R
n×n is the identity matrix, problem

(2) is identical to the one proposed in [7] to find the steepest common descent direc-
tion. We denote the latter by dSD (x̄) and the associated Lagrange multipliers vector

by λSD (x̄) = (
λSD
1 (x̄) , . . . , λSD

m (x̄)
)T

. Obviously, equations (4)-(5) hold true in
this particular case. We further recall a well-known result that will be used in our
convergence analysis.

Lemma 3 The following statements hold:

(i) the mapping dSD (·) is continuous;
(ii) x̄ ∈ R

n is Pareto-stationary for problem (1) if and only if dSD (x̄) = 0.

Proof See [27, Lemma 3.3] and [8, Lemma 3.2]. �
Based on the concept of Quasi-Newton direction, a Quasi-Newton approach for

multi-objective optimization of strongly convex objective functions is proposed in
[10]. In this algorithm, a backtracking Armijo-type line search is used to guarantee
the sufficient decrease w.r.t. all the objective functions. The result is formalized by the
following lemma.

Lemma 4 ([7, Lemma 4]) If F is continuously differentiable and JF (x)d < 0, then
there exists some ε > 0, which may depend on x, d and γ ∈ (0, 1), such that

F(x + td) < F(x) + γ t JF (x)d

for all t ∈ (0, ε].
Remark 1 By the definition of D(·, ·), we have that JF (x)d ≤ 1D(x, d). Moreover,
if Bj � 0 ∀ j ∈ {1, . . . ,m}, then it follows that D(x, d) < θQN (x). Using Lemma 4
and these results, we trivially obtain that, for all t ∈ (0, ε],

F(x + td) < F(x) + γ t JF (x)d

≤ F(x) + 1γ tD(x, d)

< F(x) + 1γ tθQN (x).

In many works for MOO [10, 25], the BFGS update formula is independently used
for all Bj , with j ∈ {1, . . . ,m}:

Bk+1
j = Bk

j − Bk
j sks

T
k Bk

j

sTk Bk
j sk

+
ykj

(
ykj

)T

sTk ykj
,

where sk = xk+1 − xk and ykj = ∇ f j (xk+1) − ∇ f j (xk).
We also introduce the formula for updating the inverse of the approximation matrix
Bj , which we denote by Hj :

Hk+1
j =

(
I − ρk

j y
k
j s

T
k

)T
Hk

j

(
I − ρk

j y
k
j s

T
k

)
+ ρk

j sks
T
k , (6)
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A limited memory Quasi-Newton approach for… 39

where ρk
j = 1/

(
sTk ykj

)
.

Similar to the scalar case [28], for each j ∈ {1, . . . ,m}, if sTk ykj > 0 and Bk
j � 0,

then Bk+1
j is positive definite. The same property holds true if {Hk

j } is considered.
When the objective functions are strictly convex, the condition sTk ykj > 0 is always
satisfied for any pair (xk+1, xk) and for each j ∈ {1, . . . ,m}. However, this property
is not guaranteed to hold in the general case. In order to overcome this issue, in
Quasi-Newton methods for scalar optimization, Wolfe conditions are imposed at each
iteration [28].

The Wolfe conditions have been extended to MOO in [12]:

F
(
xk + αdQN (xk)

) ≤ F(xk) + 1γαD
(
xk, dQN (xk)

)
,

D
(
xk + αdQN (xk), dQN (xk)

) ≥ σD(xk, dQN (xk)). (7)

Assuming that dQN (xk) is a descent direction for F at xk and there exists A ∈ R
m

such that F
(
xk + αdQN (xk)

) ≥ A for all α > 0, an interval of values exists satisfying
these conditions [12, Proposition 3.2]. The theoretical result can be further improved
assuming the boundedness of at least one objective function [29, Proposition 1].

However, even if Wolfe conditions are satisfied, it may occur that sTk ykj ≤ 0 for
some j ∈ {1. . . . ,m}. In other words, considering that

sk = xk+1 − xk = αkdQN (xk), (8)

we may have that, for some j ∈ {1. . . . ,m},

[∇ f j (xk+1) − ∇ f j (xk)
]T

dQN (xk) ≤ 0,

which can be also re-written in the form

∇ f j (xk+1)
T dQN (xk) ≤ ∇ f j (xk)

T dQN (xk). (9)

For this reason, a different formula for updating Bj is introduced in [24]. The
corresponding update formula for Hj remains similar to (6), except that ρk

j is now
defined as

ρk
j =

{
1/

(
sTk ykj

)
if sTk ykj > 0,

1/
[
D (xk+1, sk) − ∇ f j (xk)T sk

]
otherwise.

(10)

Using the above update rule, ρk
j is proved to be strictly positive even when s

T
k ykj ≤ 0.

Thus, Hk+1
j and, consequently, Bk+1

j always remain positive definite.
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2.2 Single Hessianmatrix approximation

The use of a single positive definite matrix B was proposed in [23] to approximate
∇2 f1(x), . . . ,∇2 fm(x). In this case, problem (2) becomes

min
d∈Rn

max
j=1,...,m

∇ f j (x̄)
T d + 1

2
dT Bd,

while the dual (3) changes into

max
λ∈Rm

− 1

2
λT JF (x̄) B−1 JF (x̄)T λ

s.t.
m∑
j=1

λ j = 1, λ ≥ 0.
(11)

Now, the descent direction can accordingly be computed as

dMQN (x̄) = −B−1 JF (x̄)T λMQN (x̄) ,

where λMQN (x̄) =
(
λ
MQN
1 (x̄) , . . . , λ

MQN
m (x̄)

)T
indicate the Lagrange multipliers

vector.

The difficult term
[∑m

j=1 λ j B j

]−1
appearing in (3) is replaced by B−1. As a con-

sequence, problem (11) reduces to a linearly constrained, convex quadratic program
which is easy to solve.

The unique matrix B is obtainable as the approximation of a convex combination
of matrices. For this purpose, slightly modified BFGS update formulas are introduced
in [23]:

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+ ukuTk

sTk uk
; (12)

Hk+1 =
(
I − ρkuks

T
k

)T
Hk

(
I − ρkuks

T
k

)
+ ρksks

T
k , (13)

with ρk = 1/
(
sTk uk

)
and uk = ∑m

j=1 λ
MQN
j (xk)ykj .

3 A limitedmemory Quasi-Newtonmethod

In this section, we introduce a new Limited Memory Quasi-Newton approach for
MOO, whose algorithmic scheme is reported in Algorithm 1.
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Algorithm 1 Limited Memory Quasi-Newton Method

Require: F : R
n → R

m , x0 ∈ R
n , γ ∈ (0, 1/2), σ ∈ (γ, 1), H0 � 0, M ∈ N+.

1: for k = 0, 1, 2, . . . do
2: Estimate Rk = Hk JF (xk )

T ∈ R
n×m (two-loop recursive procedure)

3: Compute

θLM (xk ) = max
λ∈Rm

− 1

2
λT JF (xk )Rkλ

s.t.
m∑
j=1

λ j = 1, λ ≥ 0
(14)

4: Let λLM (xk ) =
(
λLM0 (xk ), . . . , λ

LM
m (xk )

)T
be the Lagrange multipliers vector related to θLM (xk )

5: Let dLM (xk ) = −RkλLM (xk )
6: Choose αk > 0 (trying first αk = 1) such that

F (xk + αkdLM (xk )) ≤ F(xk ) + 1γαkD (xk , dLM (xk )) , (15)
D (xk + αkdLM (xk ), dLM (xk )) ≥ σD (xk , dLM (xk )) (16)

7: Let xk+1 = xk + αkdLM (xk )
8: if k ≥ M then
9: Discard vectors pair

(
sk−M , uk−M

)
from storage

10: end if
11: Compute and save

sk = xk+1 − xk (17)

uk =
m∑
j=1

λLMj (xk )
[∇ f j

(
xk+1

) − ∇ f j (xk )
]

(18)

12: end for

In the proposed approach, we use a single positive definite matrix Hk at each
iteration k. In Sect. 3.2, we introduce the update formula for Hk , which is slightly
different w.r.t. the one introduced in [23]. As in L-BFGS for scalar optimization, we
maintain only a finite number M of vectors pairs {(si , ui )} in memory: the oldest
one is discarded each time a new vectors pair is calculated. These pairs are used
in a two-loop recursive procedure to efficiently carry out the matrix multiplication
Rk = Hk JF (xk)T (Sect. 3.1). This procedure is essentially an extension for MOO
of the one used in L-BFGS [28]. The matrix Rk is then used in problem (14) at
step 3 of the algorithm: the latter is simply derived from problem (11) substituting
Hk JF (xk)T with Rk . We denote by θLM (xk) the optimal value of problem (14) at
xk . Moreover, we respectively denote by λLM (xk) (Line 4) and dLM (xk) (Line 5) the
Lagrange multipliers vector and the direction corresponding to θLM (xk). Note that (4)
is valid in this context too. Finally, in Line 6, a Wolfe line search is carried out to find
a step size αk along the direction dLM (xk), satisfying the Wolfe conditions for MOO
(Sect. 3.3).

In the following, we deeply analyze the various aspects of Algorithm 1.
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3.1 Two-loop recursive procedure for MOO

In L-BFGS, one of the most relevant features is the two-loop recursive procedure
which, at any iteration k, given the vectors pairs saved in memory, allows to efficiently
compute the product Hk∇ f (xk), where f (·) indicates the objective function [28]. We
remind, indeed, that in scalar optimization the negative of this product identifies the
Quasi-Newton descent direction: d(xk) = −Hk∇ f (xk). Using this procedure, we do
not need to store the matrix H in memory. This property could be crucial when high
dimensional problems are considered: in these cases, maintaining and updating the
matrix H , which is dense in general, could be extremely inefficient. In this work, we
propose an extension of this procedure for MOO: the algorithmic scheme is reported
in Algorithm 2.

Algorithm 2 Two-Loop Recursive Procedure

Require: k ∈ N, M ∈ N+, {(si , ui ) | i ∈ [max {0, k − M} , k − 1]}, JF (xk ) ∈ R
m×n , H0 � 0.

1: q = JF (xk )
T

2: if k = 0 then
3: R0 = H0q
4: else
5: for i = k − 1, . . . ,max {0, k − M} do
6: αi = ρi qT si
7: q = q − uiα

T
i

8: end for
9: Rk = H0q
10: for i = max {0, k − M} , . . . , k − 1 do

11: βi = ρi
(
Rk

)T
ui

12: Rk = Rk + si (αi − βi )
T

13: end for
14: end if
15: return Rk

With respect to the scalar optimization case, this procedure computes the product
Hk JF (xk)T . The same result could be obtained repeating m times the procedure
for scalar optimization to find Hk∇ f j (xk) for all j ∈ {1, . . . ,m}. In both cases,
m (4Mn + n) multiplications are required. However, Algorithm 2 allows to exploit
the optimized operations of software libraries for vector calculus.

The employment of Algorithm 2 is possible thanks to some properties of (13).
Indeed, the latter can be re-written in the following form [28]:

Hk =
[(

V k−1
)T

. . .
(
V k−M

)T
]
Hk−M

[
V k−M . . . V k−1

]

+ρk−M
[(

V k−1
)T

. . .
(
V k−M+1

)T
]
sk−MsTk−M

[
V k−M+1 . . . V k−1

]

+ρk−M+1
[(

V k−1
)T

. . .
(
V k−M+2

)T
]
sk−M+1s

T
k−M+1

[
V k−M+2 . . . V k−1

]

+ . . .
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A limited memory Quasi-Newton approach for… 43

+ρk−1sk−1s
T
k−1,

where V i = I − ρi ui sTi . As in L-BFGS, the exact matrix Hk−M is substituted by
a suitable sparse positive definite matrix H0. From this last equation, the two-loop
recursive procedure to compute the product Hk JF (xk)T is derived.We refer the reader
to [28] for more details.

3.2 Definition of H

In the proposed approach, we use a single positive definite matrix H . As in [23] the
update formula (13) is used. However, taking inspiration from (10), we use a different
definition of ρk :

ρk =
{
1/

(
sTk uk

)
if sTk uk > 0,

1/
{∑m

j=1 λLM
j (xk)

[
D (xk+1, sk) − ∇ f j (xk)T sk

]}
otherwise.

(19)

As in [24], we carry out a line search to find a step size satisfying theWolfe conditions
for MOO (Sect. 3.3). However, recalling the reasoning in Sect. 2.1, in order to ensure
that Hk+1 � 0, we force through (19) ρk to be positive even when sTk uk ≤ 0. We
formalize this statement in the following proposition.

Proposition 1 Considering a generic iteration k of Algorithm 1, let xk ∈ R
n,

dLM (xk) ∈ R
n be a direction such that D (xk, dk) < 0, αk > 0 be a step size along

dLM (xk) and λLM (xk) be the Lagrange multipliers vector obtained solving problem
(14). If ρk is updated by (19), then ρk is positive.

Proof See Appendix A.2. �

Remark 2 In the single objective case, the update formula (13) for Hk coincides with
the classical BFGS rule. Indeed, it is sufficient to realize that, since λLM (xk) lies in the
unit simplex by (4), then uk = yk . Moreover, the same reasoning can be applied with
(19) to get that ρk = 1/

(
sTk yk

)
. Hence, the two-loop recursive procedure reduces

to that of L-BFGS. In turn, the overall Algorithm 1 is nothing but L-BFGS, since
dk = −Hk∇ f (x̄) and Wolfe conditions are imposed by the line search.

Remark 3 The procedure in Algorithm 2 cannot be used if we consider an approxi-
mation matrix for each objective function, as in problem (2). In such case, both in the
primal and in the dual problem (3) the matrices are tied to the problem variables; for
example, when solving (3), the product [∑m

j=1 λ j B j ]−1 JF (x̄)T would be recomputed
any time a different solution λ is considered. The use of a single positive definitematrix
prevents this issue:matrixmultiplication H JF (x̄)T can be computed only once, before
solving subproblem (11), making it possible to exploit the efficiency of the two-loop
recursive procedure.
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3.3 Wolfe line search

In this section, we introduce a simple line search scheme to find a step size α along a
given direction dk satisfying the Wolfe conditions:

F (xk + αdk) ≤ F(xk) + 1γαD (xk, dk) , (20)

D (xk + αdk, dk) ≥ σD (xk, dk) . (21)

Before proceeding, we make a reasonable assumption. Then, we prove that there
exists an interval of values satisfying the Wolfe conditions. Note that an analogous
result has been obtained in [12, 29] under the different assumptions also reported in
Sect. 2.1 of this manuscript.

Assumption 1 The objective function F has bounded level sets in the multi-objective
sense, i.e., the set LF (z) = {x ∈ R

n | F(x) ≤ z} is bounded for any z ∈ R
m .

Proposition 2 Let Assumption 1 hold. Let xk ∈ R
n and assume that dk ∈ R

n is a
direction such that D(xk, dk) < 0, γ ∈ (0, 1/2) and σ ∈ (γ, 1). Then, there exists an
interval of values [αl , αu], with 0 < αl < αu, such that for all α ∈ [αl , αu] equations
(20) and (21) hold.

Proof See Appendix B. �
After proving the existence of an interval of values satisfying theWolfe conditions,

we report the algorithmic scheme of the considered line search.

Algorithm 3Wolfe Line Search
Require: F : R

n → R
m , xk ∈ R

n , dk ∈ R
n , γ ∈ (0, 1/2), σ ∈ (γ, 1).

1: α0l = 0, α0u = ∞, α0 = 1
2: for t = 0, 1, 2, . . . do
3: if ∃ j s.t. f j

(
xk + αt dk

)
> f j (xk ) + γαtD (xk , dk ) then

4: αt+1
u = αt

5: αt+1
l = αtl

6: else
7: αt+1

u = αtu
8: if D

(
xk + αt dk , dk

)
< σD (xk , dk ) then

9: αt+1
l = αt

10: else
11: return αt

12: end if
13: end if
14: Choose αt+1 ∈

(
αt+1
l , αt+1

u

)

15: end for

Starting from α0
l = 0, α0

u = ∞, the core idea of the line search is that of reducing
the interval

[
αt
l , α

t
u

]
until a valid step size αt is found. At the beginning of the for-loop,

the Wolfe sufficient decrease condition (20) is checked. If it is not satisfied by αt , we
update αt

u and we maintain the same value for αt
l (Lines 4 and 5). Otherwise, α

t
u is not
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updated (Line 7) and we check if the Wolfe curvature condition (21) is satisfied by
αt : if it is, both Wolfe conditions are satisfied and, then, the current step size value is
returned; else αt

l is updated according to Line 9. After updating αt
u or αt

l , a new value
for the step size αt is chosen in the interval

(
αt
l , α

t
u

)
and the process is repeated.

In the next lemma, we state some properties related to the interval upper and lower
bounds αt

u and αt
l .

Lemma 5 Consider a generic iteration t of Algorithm 3. Let xk ∈ R
n and dk be a

direction such that D(xk, dk) < 0. Then, we have the following properties:

(i) if αt
u < ∞, then

∃ j
(
αt
u

)
s.t. f j(αt

u)
(xk + αt

udk) > f j(αt
u)

(xk) + γαt
uD(xk, dk); (22)

(ii) αt
l is such that

F(xk + αt
l dk) ≤ F(xk) + 1γαt

lD(xk, dk), (23)

D(xk + αt
l dk, dk) < σD(xk, dk). (24)

Proof See Appendix B. �
In the following proposition, we state that the proposed line search is well defined,

i.e., it terminates after a finite number of iterations returning a step size satisfying the
Wolfe conditions.

Proposition 3 Let Assumption 1 hold, δ ∈ [1/2, 1), η > 1 and let {αt
l , α

t
u, α

t } be the
sequence generated by Algorithm 3. Assume that:

1. dk ∈ R
n is a descent direction for F at xk ∈ R

n;
2. for all t > 0, the step size αt is chosen so that

a) if αt
u = ∞,

αt ≥ ηmax
{
αt
l , α

0
}

, (25)

b) if αt
u < ∞,

max
{(

αt − αt
l

)
,
(
αt
u − αt)} ≤ δ

(
αt
u − αt

l

)
.

Then Algorithm 3 is well defined, i.e., it stops after a finite number of iterations
returning a step size α̂ satisfying the Wolfe conditions for MOO.

Proof See Appendix B. �
Remark 4 To the best of our knowledge, the first Wolfe line search for MOO was
proposed in [29]. Our line search is just a simpler algorithm that is guaranteed to
produce a point satisfying the Wolfe conditions. In fact, we think that not using an
inner solver, as done in [29], could be a performance disadvantage and, in addition,
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smarter strategies to set the trial step sizemay be integrated.We decided not to compare
the two line searches, since finding new efficient methodologies to find the step size
is not the focus of our work. Moreover, we are confident that the experimental results
of Sect. 5 would be similar regardless the employed Wolfe line search.

4 Convergence analysis

In this section, we show the convergence properties of our Limited Memory Quasi-
Newton approach. Before proceeding, similarly to what is done in [30], we need to
make some assumptions about the objective function F and the initial approximation
matrix H0.

Assumption 2 We assume that:

(i) F is twice continuously differentiable;
(ii) the set LF (F (x0)) = {x ∈ R

n | F (x) ≤ F (x0)} is convex;
(iii) ∃a, b ∈ R+ such that, for all j ∈ {1, . . . ,m},

a ‖z‖2 ≤ zT∇2 f j (x)z ≤ b ‖z‖2 , ∀z ∈ R
n,∀x ∈ LF (F(x0)) .

Assumption 3 The matrix H0 is chosen such that the norms
∥∥H0

∥∥ and
∥∥B0

∥∥ are
bounded.

Remark 5 Assumption 2 implies Assumption 1. Indeed, f j (·) is strongly convex for
all j ∈ {1, . . . ,m}, and thus has all the level sets bounded. Also, by Assumption 1,
we have that Propositions 2 and 3 concerning the line search remain valid.

Remark 6 By Assumption 2, we have sTk ykj > 0 for any k and for all j ∈ {1, . . . ,m}.
Then, considering (18) and since λLM (xk) satisfies (4), we have that sTk uk > 0. Then,
according to (19), ρk = 1/

(
sTk uk

)
and, thus, we update Bk and Hk using (12) and

(13), respectively.

In order to carry out the theoretical analysis, we take as reference Algorithm 4,
which is mathematically equivalent to Algorithm 1 but makes it more explicit how
the approximation of Hk is computed, i.e., applying M times the update rule (13)
starting from H0. In the remainder of the section, we will consider the approximation
matrix Bk for the sake of clarity; the results are obviously the same if we consider the
matrix Hk . Finally, note that Algorithm 4 is only used in this section, since, unlike
Algorithm 1, it requires to store the entire matrix in memory.

For the theoretical analysis, we also need to introduce the formula for the trace and
the determinant of the matrix Bk+1:

Tr(Bk+1) = Tr(Bk) −
∥∥Bksk

∥∥2
sTk Bksk

+ ‖uk‖2
sTk uk

, (26)

det(Bk+1) = det(Bk)
sTk uk

sTk Bksk
. (27)
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Note that these expressions hold when (12) is used to update the matrix Bk , which
is always the case here by Assumption 2. We also introduce some basic notation that
will be useful in the following analysis.
Notation:Wewill denote by�

(
Bk

)
the eigenvalues set of the matrix Bk ; by ωm

(
Bk

)
and ωM

(
Bk

)
we indicate the minimum and the maximum eigenvalue, respectively;

we refer by βk to the angle between the vectors sk and Bksk . Concerning βk , we also
recall the formula of the cosine:

cosβk = sTk Bksk
‖sk‖

∥∥Bksk
∥∥ . (28)

Algorithm 4 Limited Memory Quasi-Newton Method

Require: F : R
n → R

m , x0 ∈ R
n , γ ∈ (0, 1/2), σ ∈ (γ, 1), B0 � 0, M ∈ N+.

1: Let h = 0
2: for k = 0, 1, 2, . . . do
3: Compute θLM (xk ) and λLM (xk ) solving problem (11)

4: Let dLM (xk ) = −
(
Bk

)−1
JF (xk )

T λLM (xk )

5: Choose αk > 0 s.t. (15) and (16) hold
6: Let xk+1 = xk + αkdLM (xk )
7: if k ≥ M then
8: Discard vectors pair

(
sk−M , uk−M

)
from storage

9: Set h = k − M + 1
10: end if
11: Compute and save (sk , uk ) according to (17)-(18)
12: Let Bk

(0) = B0

13: for l = 0, . . . ,min {k, M − 1} do
14: Set

Bk
(l+1) = Bk

(l) −
Bk

(l)sl+hs
T
l+h B

k
(l)

sTl+h B
k
(l)sl+h

+ ul+hu
T
l+h

sTl+hul+h
(29)

15: end for
16: Let Bk+1 = Bk

(min{k,M−1}+1)
17: end for

We are now able to begin the convergence analysis with three technical lemmas.

Lemma 6 Let Assumption 2 hold and consider the sequences {xk} and {dLM (xk)}
generated by Algorithm 4. Then,

∑
k≥0

D (xk, dLM (xk))2

‖dLM (xk)‖2
< ∞.

Proof The result follows as in Proposition 3.3 in [24], as the assumptions made in the
latter are trivially implied by Assumption 2. �
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Lemma 7 Assume that Assumption 2 holds. Let {xk} be the sequence generated by
Algorithm 4. Then, for all k ≥ 0, we have that

D (xk, dLM (xk)) ≤ −cosβk

2
‖dLM (xk)‖ ‖dSD(xk)‖ .

Proof The proof is analogous to the one of Lemma 4.2 in [24], taking into account
that we have a single approximation matrix Bk . �
Lemma 8 Let Assumptions 2 and 3 hold. Moreover, let {xk} be the sequence generated
by Algorithm 4. Then, there exists a constant δ > 0 such that, for all k ≥ 0, we have
that

cosβk ≥ δ.

Proof Let us consider k ≥ 0, τ ∈ [0, 1] and the point xk + τ sk . By Assumption 2
and equations (15) and (17), we have that xk + τ sk ∈ LF (F (x0)). Also recalling that
λLM (xk) satisfies (4), we obtain for any z ∈ R

n that

∫ 1

0
a ‖z‖2 dτ ≤

∫ 1

0
zT

m∑
j=1

λLM
j (xk)∇2 f j (xk + τ sk)z dτ ≤

∫ 1

0
b ‖z‖2 dτ

and, then,

a ‖z‖2 ≤ zT
∫ 1

0

m∑
j=1

λLM
j (xk)∇2 f j (xk + τ sk)z dτ ≤ b ‖z‖2 . (29)

For z = sk we thus obtain

a ‖sk‖2 ≤ sTk

∫ 1

0

m∑
j=1

λLM
j (xk)∇2 f j (xk + τ sk)sk dτ ≤ b ‖sk‖2 . (30)

Defining

Ik =
∫ 1

0

m∑
j=1

λLM
j (xk) ∇2 f j (xk + τ sk) dτ (31)

and recalling (18), we solve the integral:

Iksk =
m∑
j=1

λLM
j (xk)

∫ 1

0
∇2 f j (xk + τ sk)sk dτ

=
m∑
j=1

λLM
j (xk)

[∇ f j (xk+1) − ∇ f j (xk)
] = uk .

(32)
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Given this last result and equation (30), we obtain that

a ‖sk‖2 ≤ sTk uk ≤ b ‖sk‖2

and, thus, considering the left-hand side,

sTk uk

‖sk‖2
≥ a. (33)

Furthermore, if we consider z = I 1/2k sk in (29), with I 1/2k being the positive definite
square root of Ik , we get

a
∥∥∥I 1/2k sk

∥∥∥2 ≤
(
I 1/2k sk

)T
∫ 1

0

m∑
j=1

λLM
j (xk)∇2 f j (xk + τ sk) dτ

(
I 1/2k sk

)
≤ b

∥∥∥I 1/2k sk
∥∥∥2

and, recalling (31),

a
(
sTk Iksk

)
≤ sTk I 2k sk ≤ b

(
sTk Iksk

)
.

Then, given Remark 6 and equation (32), focusing on the right-hand side, we have

‖uk‖2
sTk uk

≤ b.

Now, recalling Assumption 3 and equation (29), we apply recursively (26) and we
obtain that

Tr(Bk+1) = Tr(Bk
(0)) −

min{k,M−1}∑
l=0

∥∥∥Bk
(l)sl+h

∥∥∥2

sTl+h B
k
(l)sl+h

+
min{k,M−1}∑

l=0

‖ul+h‖2
sTl+hul+h

≤ Tr(B0) +
min{k,M−1}∑

l=0

‖ul+h‖2
sTl+hul+h

≤ Tr(B0) + (min {k, M − 1} + 1) b ≤ b̃,

(34)

for some b̃ > 0, where the inequalities come from the fact that, for all k ≥ 0 and
l = 0, . . . ,min{k, M − 1}, Bk

(l) is positive definite (cf. the instructions of Algorithm 4
and Remark 6). We can apply a similar reasoning with the determinant formula (27):

det(Bk+1) = det(Bk
(0))

min{k,M−1}∏
l=0

sTl+hul+h

sTl+h B
k
(l)sl+h

= det(B0)

min{k,M−1}∏
l=0

sTl+hul+h

‖sl+h‖2
‖sl+h‖2

sTl+h B
k
(l)sl+h

.
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From (34), we deduce that the greatest eigenvalue of Bk
(l) is smaller than b̃. Thus, given

Assumption 3 and equation (33), we get that

det
(
Bk+1

)
≥ det(B0)

(
a

b̃

)min{k,M−1}+1

≥ ã, (35)

where ã > 0.
Then, by (28), the min-max theorem and the triangle inequality, we have:

cosβk = sTk Bksk
‖sk‖

∥∥Bksk
∥∥ ≥ ωm

(
Bk

) ‖sk‖2∥∥Bk
∥∥ ‖sk‖2

= ωm
(
Bk

)
∥∥Bk

∥∥ .

We know that:

• by definition of trace and determinant, recalling (34) and (35), we get

det
(
Bk

)
=

∏

ω∈�(Bk)

ω ≤ (n − 1)ωM

(
Bk

)
ωm

(
Bk

)
,

and thus

ωm

(
Bk

)
≥ det

(
Bk

)

(n − 1) ωM
(
Bk

) ≥ ã

(n − 1)Tr
(
Bk

) ≥ ã

(n − 1) b̃
;

• considering the euclidean norm and that Bk is a real positive definite matrix,

∥∥∥Bk
∥∥∥ ≤ ωM

(
Bk

)
≤ Tr

(
Bk

)
≤ b̃.

Joining the last three results, we obtain that

cosβk ≥ ωm
(
Bk

)
∥∥Bk

∥∥ ≥ ã

(n − 1) b̃2
> 0,

where the last inequality comes from the definitions of ã and b̃. Thus, we get the thesis
choosing

δ = ã

(n − 1) b̃2
.

�
In the next proposition,we state that the sequence of points produced byAlgorithm4

converges to a Pareto optimal point.
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Proposition 4 Let Assumptions 2 and 3 hold. Assume that {xk} is the sequence gen-
erated by Algorithm 4. Then, {xk} converges to a Pareto optimal point x� for problem
(1).

Proof By Lemmas 7 and 8, we know that there exists a constant δ > 0 such that, for
all k ≥ 0,

D (xk, dLM (xk)) ≤ −cosβk

2
‖dLM (xk)‖ ‖dSD(xk)‖ ≤ − δ

2
‖dLM (xk)‖ ‖dSD(xk)‖ .

Considering this last result and Lemma 6, we obtain that

∞ >
∑
k≥0

D (xk, dLM (xk))2

‖dLM (xk)‖2
≥

∑
k≥0

δ2

4
‖dSD(xk)‖2 ,

and, thus,

lim
k→∞ dSD(xk) = 0. (36)

By (15), we know that, for all k ≥ 0, xk ∈ LF (F (x0)). Since LF (F (x0)) is
compact (Remark 5), there exists a subsequence K ⊆ {0, 1, . . .} such that

lim
k→∞
k∈K

xk = x�. (37)

Recalling Lemma 3 and equation (36), we have that dSD (x�) = 0 and, thus, x� is
Pareto-stationary for problem (1). Therefore, by Lemma 1 and Assumption 2, we
conclude that x� is Pareto optimal.

Now, let us assume, by contradiction, that there exists another subsequence K̃ ⊆
{0, 1, . . .} such that

lim
k→∞
k∈K̃

xk = x̃, (38)

with x̃ 
= x�.
We prove that F (x̃) 
= F (x�). If it were false, since by Assumption 2 F is strongly

convex and LF (F (x0)) is convex, for all t ∈ (0, 1), we would get that

F
(
t x̃ + (1 − t) x�

)
< t F (x̃) + (1 − t) F

(
x�

) = F
(
x�

)
.

But, in this case, we would contradict the fact that x� is Pareto optimal.
Then, given that x� is Pareto optimal and that F (x̃) 
= F (x�),

∃ j̃ ∈ {1, . . . ,m} such that f j̃
(
x�

)
< f j̃ (x̃) .
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Now, recalling (37) and (38), there exist k ∈ K and k̃ ∈ K̃ such that k < k̃ and

f j̃ (xk) < f j̃
(
xk̃

)
.

But, since (15) holds at each iteration of Algorithm 4, we implicitly have that the
sequence

{
f j (xk)

}
is decreasing, for all j ∈ {1, . . . ,m}. Thus, we get a contradiction

and we conclude that

lim
k→∞ xk = x�,

with x� being Pareto optimal. �
In the rest of the section, we discuss the convergence rate of Algorithm 4. We first

have to provide a technical result.

Lemma 9 Let Assumptions 2 and 3 hold. Moreover, let {xk} be the sequence generated
by Algorithm 4 and x� be the Pareto optimal point to which the sequence converges.
Then, for all k ≥ 0,

(i) ‖xk − x�‖ ≤ 2
a ‖dSD(xk)‖;

(ii) ‖sk‖ ≥ (1−σ)
2b cosβk ‖dSD(xk)‖.

Proof The proof is analogous to the one of Lemma 4.4 in [24], recalling that here a
single approximation matrix Bk is considered. �

We are now ready to prove that the sequence of points generated by Algorithm 4
R-linearly converges to Pareto optimality.

Proposition 5 Let Assumptions 2 and 3 hold. Furthermore, let {xk} be the sequence
generated by Algorithm 4 and x� be the Pareto optimal limit point of the sequence.
Then, {xk} R-linearly converges to x�. In addition, we have that

∑
k≥0

∥∥xk − x�
∥∥ < ∞. (39)

Proof We first introduce the function f � : R
n → R, defined as

f � (x) =
m∑
j=1

λSD
j

(
x�

)
f j (x) , (40)

where λSD (x�) is the multipliers vector associated with the steepest common descent
direction at x�. Recalling Lemmas 1 and 3, that x� is Pareto optimal and that (5) holds
for dSD (x�), we have that

∇ f �
(
x�

) =
m∑
j=1

λSD
j

(
x�

) ∇ f j
(
x�

) = −dSD
(
x�

) = 0. (41)
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Now, for all k ≥ 0 and j ∈ {1, . . . ,m}, by Assumption 2 and using Taylor’s theorem,
we get

a

2

∥∥xk − x�
∥∥2 ≤ f j (xk) − f j

(
x�

) − ∇ f j
(
x�

)T (
xk − x�

) ≤ b

2

∥∥xk − x�
∥∥2 .

Multiplying this result by λSD
j (x�), summing over j ∈ {1, . . . ,m}, recalling (4),

which is valid for λSD (x�), and (41), we obtain that

a

2

∥∥xk − x�
∥∥2 ≤ f � (xk) − f �

(
x�

) ≤ b

2

∥∥xk − x�
∥∥2 . (42)

Given Lemma 9, from the right-hand side of the last result we get

f � (xk) − f �
(
x�

) ≤ 2b

a2
‖dSD (xk)‖2 . (43)

On the other side, (4), (15) and (40) imply that, for all k ≥ 0,

f � (xk+1) ≤ f � (xk) + γαkD (xk, dLM (xk))

which, by subtracting the term f � (x�) in both sides and taking into account Lemmas 7
and 9, changes into

f � (xk+1) − f �
(
x�

) ≤ f � (xk) − f �
(
x�

) − γ cosβk

2
‖sk‖ ‖dSD (xk)‖

≤ f � (xk) − f �
(
x�

) − γ (1 − σ) cos2 βk

4b
‖dSD (xk)‖2 .

Joining this last result and (43), we obtain that

f � (xk+1) − f �
(
x�

) ≤
(
1 − γ (1 − σ) a2 cos2 βk

8b2

) (
f � (xk) − f �

(
x�

))
. (44)

Now, for all k ≥ 0, we define

rk = 1 − γ (1 − σ) a2 cos2 βk

8b2
.

It is easy to see that, by the definitions of γ and σ , Assumption 2 and Lemma 8,
rk ∈ (0, 1). In addition, by Lemma 8, we also have that there exists a constant δ > 0
such that, for all k ≥ 0,

rk ≤ 1 − γ (1 − σ) a2δ2

8b2
= r̄ < 1.
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Then, recursively applying equation (44) and taking into account that, combining (4),
(15) and (40), f � (x0) − f � (x�) > 0, we get

f � (xk+1) − f �
(
x�

) ≤
[

k∏
l=0

rl

] (
f � (x0) − f �

(
x�

))

≤
[

k∏
l=0

r̄

] (
f � (x0) − f �

(
x�

))

= r̄ k+1 (
f � (x0) − f �

(
x�

))
.

Considering this last result and the left-hand side of (42), we obtain that

∥∥xk+1 − x�
∥∥ ≤

(
r̄ k+1

)1/2 [
2

a

(
f �

(
x0

)
− f �

(
x�

))]1/2
,

and, thus, the sequence {xk} R-linearly converges to x�.
Summing the last result for all k ≥ 0 and recalling that r̄ < 1, we get that (39)

holds. �

5 Computational experiments

In this section,we report the results of thoroughcomputational experiments, comparing
the performance of the proposed approach and other state-of-the-art methods from the
literature. All the tests were run on a computer with the following characteristics:
Ubuntu 20.04 OS, Intel Xeon Processor E5–2430 v2 6 cores 2.50 GHz, 16 GB RAM.
For all algorithms, the code was implemented in Python3. 1 Finally, in order to solve
the optimization problems to determine the descent direction, e.g., problem (14), the
Gurobi Optimizer (Version 9) was employed.

5.1 Experiments settings

In the next subsections, we provide detailed information on the settings used for the
experiments.

5.1.1 Algorithms and parameters

We chose to compare the new limited memory Quasi-Newton approach, which we
call LM-Q-NWT for the rest of the section, with some state-of-the-art Newton and
Quasi-Newton methods for MOO from the literature.

The first competitor is the Multi-Objective Newton method (NWT) proposed in [8],
which is an extension of the classical Newton method to multi-objective optimization.
In this algorithm, the problem for finding the search direction is similar to problem (2):

1 The implementation code can be found at https://github.com/pierlumanzu/
limited_memory_method_for_MOO [37].
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the difference is on the use of the real Hessian ∇2 f j (x̄) instead of the approximation
matrix Bj , for all j ∈ {1, . . . ,m}. Since this method is not designed to handle uncon-
strained multi-objective non-convex problems, we evaluated its performance only on
the convex test instances.

The other two competitors are the Quasi-Newton approach (Q-NWT) proposed in
[24] and the Modified Quasi-Newton method (MQ-NWT) presented in [23]. We refer
the reader back to Sect. 2.1 for further details. At the first iteration of all the Quasi-
Newton approaches, including LM-Q-NWT, the approximation matrix/matrices is/are
set equal to the identity matrix.

In order to make the comparisons as fair as possible, we decided to use the same
line search strategy for all the approaches. In particular, we employed the proposed
Wolfe line search (Algorithm 3). The values for the line search parameters were chosen
according to some experiments on a subset of the tested problems and are as follows:
γ = 10−4, σ = 10−1, η = 2.5 and δ = 0.5.We do not report these preliminary results
for the sake of brevity. In order to efficiently use the proposed line search in MQ-NWT,
we used equation (19) to compute ρk at each iteration k.

Finally, the choice for the parameter M of the new limited memory approach is
separately discussed in Sect. 5.2. Since it denotes the number of vectors pairs main-
tained in memory during the iterations, it is the most critical among the LM-Q-NWT
parameters.

5.1.2 Problems

In Table 1, we list the tested problems. In particular, we compared the algorithms in
78 convex and 83 non-convex problems. All the test instances are characterized by
objective functions that are at least continuously differentiable almost everywhere. If
a problem is characterized by singularities, these latter ones were counted as Pareto-
stationary points. All the problems have objective functions that let Assumption 1
hold: the latter is essential to guarantee the finite termination of the proposed Wolfe
line search.

Some problem names are characterized by the prefix M-. These problems are
rescaled versions of the original ones and their formulations are provided in
Appendix C. In this appendix, we also introduce a new convex test problem, which
we call MAN_2.

For each algorithm, we tested each problem with 100 different initial points cho-
sen from a uniform distribution. The latter was defined through lower and upper
bounds specified for each problem. Since in this work we consider unconstrained
multi-objective optimization problems, these bounds were only used to choose the
random initial points. For the M-FDS_1, MMR_5, M-MOP_2, MOP and CEC prob-
lems, the lower and upper bounds values can be found in the referenced papers. For
the others, the values are provided in Table 2.

Finally, starting from an initial point, we decided to let the algorithms run until one
of the following stopping conditions was met:

• the current solution is ε-Pareto-stationary (Definition 4); in the experiments,

ε = 5eps1/2,
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Table 1 Problems used in the computational experiments

Type Source Problem m n

Convex [31] JOS_1a, JOS_1b 2 2, 5, 10, 20, 30, 40, 50, 100, 200, 500, 1000

JOS_1c

[21] M-MAN_1

[32] SLC_2

[8] M-FDS_1 3

– MAN_2

[33] MOP_7 3 2

Non convex [34] MMR_5 2 2, 5, 10, 20, 30, 40, 50, 100, 200, 500, 1000

[33] M-MOP_2

MOP_3 2 2

[35] CEC09_1, CEC09_2 2 5, 10, 20, 30, 40, 50, 100, 200, 500, 1000

CEC09_3, CEC09_7

CEC09_8, CEC09_10 3

Table 2 Bounds used to choose
the initial points

Problem Bounds

JOS_1a [−10, 10]n

JOS_1b
[
−102, 102

]n

JOS_1c
[
10−2, 1

]n

SLC_2
[
−102, 102

]n

M-MAN_1 [−10, 10]n

MAN_2 [−1, 1]n

where eps denotes the machine precision;
• a time limit of 2min is reached.

5.1.3 Metrics

For each algorithm and problem, the main metrics to be computed are the following.

• Nε: the percentage of runs ended with an ε-Pareto-stationary point.
• T : the computational time to reach the ε-Pareto-stationarity from an initial point.
If the ε-Pareto-stationarity is not reached within the time limit, the value of T
related to that point is set to ∞.

• TM : the mean of the finite T values.
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In Sect. 5.4, we employed the metrics proposed in [17]: purity, �–spread and �–
spread. These metrics are used to evaluate the quality of Pareto front approximations.
On the one hand, the puritymetric indicates the ratio of the number of non-dominated
points that a method obtained w.r.t. a reference front over the number of the points
produced by that method. The reference front is obtained by combining the fronts
retrieved by all the considered algorithms and by discarding the dominated points.
On the other hand, the spread metrics measure the uniformity of the generated fronts
in the objectives space. In particular, the �–spread is defined as the maximum �∞
distance in the objectives space between adjacent points of the Pareto front, while the
�–spread is similar to the standard deviation of this distance.

Finally, we employed the performance profiles introduced in [36], which are an
useful tool to appreciate the relative performance and robustness of the considered
algorithms. The performance profile of a solver w.r.t. a certain metric is the (cumu-
lative) distribution function of the ratio of the score obtained by the solver over the
best score among those obtained by all the considered solvers. In other words, it is the
probability that the score achieved by a method in a problem is within a factor τ ∈ R

of the best value obtained by any of the algorithms in that problem.We refer the reader
to [36] for additional information about this tool. Since Nε and purity have increasing
values for better solutions, the performance profiles w.r.t. these metrics were produced
based on the inverse of the obtained values. All the performance profiles were plotted
with specific axes ranges in order to remark the differences among the considered
solvers.

5.2 Selection of the parameterM

TheparameterM indicates howmanyvectors pairs {(si , ui )} aremaintained inmemory
at each iteration of LM-Q-NWT. A bad value for this parameter might compromise the
overall performance of the approach, making it too slow or not capable of reaching
ε-Pareto-stationary points within the time limit.

In order to select a proper value forM , we analyzed the performance of LM-Q-NWT
with M ∈ {2, 3, 5, 10, 20} on a subset of the tested problems.

• 2 convex problems: SLC_2 (m = 2), MAN_2 (m = 3).
• 2 non-convex problems: CEC09_1 (m = 2), CEC09_10 (m = 3).

In Fig. 1, we report the performance profiles for the five variants of the new limited
memory method. The solvers with M ∈ {5, 10} turned out to be the best w.r.t. both
Nε and T , while the variant with M = 2 was outperformed by all the other methods.
We conclude that too little information on the previous steps can compromise the
performance of LM-Q-NWT. On the other hand, the management of too many vectors
pairs and the use of the two-loop recursive procedure can require great computational
costs. A demonstration of this fact is the performance of the proposed approach with
M = 20 on the T metric. Although this solver performed well w.r.t. Nε, it is only the
fourth most robust algorithm in terms of computational time.

After analyzing the performance profiles,we decided to use the new limitedmemory
approach with M = 5 for the rest of the section. However, the variant with M = 10
appears to be a good choice too.
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Fig. 1 Performance profiles for the LM-Q-NWT algorithm with M ∈ {2, 3, 5, 10, 20} on the SLC_2,
MAN_2, CEC09_1 and CEC09_10 problems (for interpretation of the references to color in text, the reader
is referred to the electronic version of the article). Performance metric: a Nε ; b T

5.3 Overall comparisons

In this section, we compare the proposed approachwith theNewton andQuasi-Newton
algorithms described in Sect. 5.1.1. As already mentioned, we tested NWT only on the
convex problems. Then, we separately report the performance profiles for the convex
and non-convex problems in Figs. 2 and 3 respectively. In order to better remark
the differences among the methods, for each metric we show three plots concerning
different sets of values for n.

• Figs. 2a, 2d, 3a, 3d: all the n values.
• Figs. 2b, 2e, 3b, 3e: n ≥ 50.
• Figs. 2c, 2f, 3c, 3f: n < 50.

Regarding the performance on the convex problems for all then values, the proposed
approach proved to be the best algorithm, outperforming the competitors w.r.t. both the
metrics. Moreover, the gap between LM-Q-NWT and the others is sharper when taking
into account the non-convex problems or the high dimensional ones. For high n values,
the NWT and Q-NWT algorithms proved to suffer the maintenance of the Hessians and
the approximation matrices respectively. As a consequence, they turned out to be
the least robust w.r.t. both the metrics. Using a single approximation matrix allowed
the MQ-NWT approach to perform better. However, in extremely high dimensional
problems, even managing a single matrix proved to be an expensive job. In these
cases, the performance of the limited memory approach was remarkable.

On the low dimensional problems, the NWT and Q-NWT algorithms had a good
performance. The proposed approach similarly behaved w.r.t. the Nε metric, but it
was generally outperformed by these algorithms in terms of T . Managing the real
Hessians or the approximationmatrices turned out to be a tractable taskwhen n is small
enough. Moreover, by definition, these matrices provide more accurate information
about the curvature of the objective functions than the matrix of LM-Q-NWT and
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Fig. 2 Performance profiles for the LM-Q-NWT, NWT, Q-NWT and MQ-NWT algorithms on the convex
problems of Table 1 (for interpretation of the references to color in text, the reader is referred to the
electronic version of the article). Performance metric: a–c Nε ; d–f T . Values for n: a, d All; b, e n ≥ 50;
c, f n < 50

MQ-NWT. However, these two algorithms still proved to be competitive, obtaining
good T metric results in most of the problems.

In order to analyze the performance of the algorithms more deeply, in Tables 3, 4,
5 and 6 we report the metrics values obtained in two convex and two non-convex prob-
lems respectively. In particular,we show the results forn ∈ {5, 20, 50, 200, 500, 1000}.

Regarding the Nε metric, the proposed method outperformed the competitors
regardless the values for n and m. As in the performance profiles, the differences
between LM-Q-NWT and the other approaches are clearer on the high dimensional
problems. In some of these, NWT, Q-NWT and MQ-NWT were not able to obtain any
ε-Pareto-stationary point.

On the problems with two objective functions, almost all the best results in terms
of the TM metric were obtained by the proposed approach. However, the same perfor-
mance was not obtained on the problems with m = 3 and low value for n. The use of
a single matrix seems not to provide accurate enough information about the functions
curvature when the objectives are more than two. An additional demonstration of this
fact could be also the similar performance of the MQ-NWT algorithm. On the other
hand, the use of the real Hessian/an approximation matrix for each objective function
seems to overcome the issue: indeed, NWT and Q-NWT had the best performance in
terms of TM in these cases. LM-Q-NWT still obtained great results for this metric on
the problems with three objective functions and high value for n, outperforming the
other competitors. Even with m = 3, the employment of a single matrix turned out
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Fig. 3 Performance profiles for the LM-Q-NWT, Q-NWT and MQ-NWT algorithms on the non-convex prob-
lems of Table 1 (for interpretation of the references to color in text, the reader is referred to the electronic
version of the article). Performance metric: a–c Nε ; d–f T . Values for n: a, d All; b, e n ≥ 50; c, f n < 50

Table 3 Metrics values achieved by the LM-Q-NWT, NWT, Q-NWT and MQ-NWT algorithms on the convex
M-MAN_1 problem (m = 2) for n ∈ {5, 20, 50, 200, 500, 1000}
n Nε TM

LM-Q-NWT NWT Q-NWT MQ-NWT LM-Q-NWT NWT Q-NWT MQ-NWT

5 1.0 1.0 1.0 1.0 0.029 0.126 0.054 0.031

20 1.0 1.0 1.0 1.0 0.285 0.288 0.605 0.273

50 1.0 1.0 1.0 1.0 0.538 0.978 1.332 0.54

200 1.0 1.0 1.0 1.0 1.959 25.099 22.118 5.882

500 1.0 0.03 0.0 1.0 18.367 127.817 – 42.801

1000 1.0 0.0 0.0 0.0 39.593 – – –

A value marked in bold is the best obtained for a metric on a specific problem

to be essential in high dimensional problems. Like the proposed approach, MQ-NWT
proved to perform better than NWT and Q-NWT with m = 3 and high value for n,
resulting the second best algorithm in these cases.
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Table 4 Metrics values achieved by the LM-Q-NWT, NWT, Q-NWT and MQ-NWT algorithms on the convex
M-FDS_1 problem (m = 3) for n ∈ {5, 20, 50, 200, 500, 1000}
n Nε TM

LM-Q-NWT NWT Q-NWT MQ-NWT LM-Q-NWT NWT Q-NWT MQ-NWT

5 1.0 1.0 1.0 1.0 0.771 0.132 0.176 0.758

20 1.0 1.0 1.0 1.0 2.413 0.32 0.403 2.44

50 1.0 1.0 1.0 1.0 3.376 0.891 0.688 3.287

200 1.0 1.0 1.0 1.0 5.333 13.416 5.292 13.113

500 1.0 0.95 1.0 1.0 23.353 109.853 36.66 39.028

1000 1.0 0.0 0.0 0.99 32.868 – – 109.541

A valuemarked in bold is the best obtained for a metric on a specific problem

Table 5 Metrics values achieved by the LM-Q-NWT, Q-NWT and MQ-NWT algorithms on the non-convex
M-MOP_2 problem (m = 2) for n ∈ {5, 20, 50, 200, 500, 1000}
n Nε TM

LM-Q-NWT Q-NWT MQ-NWT LM-Q-NWT Q-NWT MQ-NWT

5 1.0 1.0 1.0 0.057 0.093 0.057

20 1.0 1.0 1.0 0.116 0.166 0.113

50 1.0 1.0 1.0 0.142 0.225 0.145

200 1.0 1.0 1.0 0.324 1.158 0.495

500 1.0 1.0 1.0 1.013 5.766 1.673

1000 1.0 1.0 1.0 1.787 32.464 5.244

A value marked in bold is the best obtained for a metric on a specific problem

Table 6 Metrics values achieved by the LM-Q-NWT, Q-NWT and MQ-NWT algorithms on the non-convex
CEC09_8 problem (m = 3) for n ∈ {5, 20, 50, 200, 500, 1000}
n Nε TM

LM-Q-NWT Q-NWT MQ-NWT LM-Q-NWT Q-NWT MQ-NWT

5 1.0 1.0 1.0 1.036 0.62 1.472

20 1.0 1.0 0.99 3.4 1.357 3.72

50 1.0 1.0 1.0 5.531 2.013 6.213

200 1.0 1.0 1.0 6.565 12.028 11.798

500 0.99 0.9 0.98 26.099 80.713 36.693

1000 0.94 0.0 0.73 32.367 – 77.311

A valuemarked in bold is the best obtained for a metric on a specific problem

5.4 Results in a global optimization setting

In the previous section, we compared the LM-Q-NWT method with strongly related
approaches from the state-of-the-art, in terms of efficiency and effectiveness at reach-
ing approximate Pareto-stationarity. Now, we show the (positive) impact that the
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proposed procedure may have if used within a global multi-objective optimization
framework.

In particular, here we consider the memetic algorithm proposed in [21], which
is named NSMA. Starting with an initial population of N points, this method aims at
approximating the Pareto front of the considered problem, combining the genetic oper-
ators of the NSGA-II algorithm [14] with a front-based projected gradient method
FMOPG. The latter is employed, every nopt iterations of NSMA, to refine selected solu-
tions up to ε-Pareto-stationarity. Moreover, the selection of the points to be optimized
is based on the ranking and the crowding distance values assigned to the population at
each iteration. Finally, the algorithm exploits a front-based variant of the Armijo-Type
Line Search for MOO defined in [7]. For additional information about NSMA, we refer
the reader to [21].

For the experiments of the present paper, we consider possible modifications of the
NSMA algorithm:

• NSMA-W, which employs the proposed Wolfe line search (Algorithm 3) in the
FMOPG method;

• NSMA-L, which uses the new limited memory approach (Algorithm 1) as the local
optimization procedure.

We compared these two approaches with NSGA-II and the original version of NSMA.
In the experiments, as in [21], we set N = 100 and nopt = 5. Moreover, the points

selected as starting solutions for the local search procedures were only optimized w.r.t.
all the objective functions. In the original version of the NSMAmethod, the points can
be also refined w.r.t. a subset of the objective functions I ⊂ {1, . . . ,m}. However,
Assumption 1 may not hold for some subset I and, then, when trying to optimize a
point w.r.t. I , theWolfe line search would continue its execution for an infinite number
of steps.

In Fig. 4, we report the performance profiles for the NSMA-L, NSMA-W, NSMA and
NSGA-II algorithms on the problems listed in Table 1. The considered performance
metrics are purity, �–spread and �–spread. In order to make the comparisons as
independent from random operations as possible, for each algorithm and problem five
tests characterized by different seeds for the pseudo-random number generator were
executed. The five resulting Pareto front approximations were then compared based
on the purity metric: the best among them was chosen as the output of the algorithm
for the problem at hand.

In terms of purity, NSMA-L and NSMA-W turned out to be the two most robust
algorithms. The proposed Wolfe line search allowed to improve the results of the
original NSMA. In fact, the use of the limited memory approach allowed to obtain the
best possible performance. Regarding the spread metrics, NSMA-L and NSMA-W had
a similar performance. NSMA results on �–spread are comparable with the ones of the
two variants. However, it was slightly outperformed in terms of �–spread. NSGA-II
did not performwell w.r.t. all themetrics: the variants of NSMA turned out to be capable
in finding more accurate and uniform Pareto front approximations.
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Fig. 4 Performance profiles for the NSMA-L, NSMA-W, NSMA and NSGA-II algorithms on the problems
of Table 1 (for interpretation of the references to color in text, the reader is referred to the electronic version
of the article). Performance metric: a purity; b �–spread; c �–spread

6 Conclusions

In this paper we proposed a new limited memory Quasi-Newton algorithm for uncon-
strained multi-objective optimization. To the best of our knowledge, it is the first
attempt to define such an approach for MOO. As in [23], we use a single approxi-
mation matrix, contrarily to what is done in the other Quasi-Newton approaches. The
idea of a single matrix, whose update formula is slightly modified from the one used
in the scalar case, allowed us to extend the L-BFGS two-loop recursive procedure to
multi-objective optimization: the Hessian matrix approximation does not need to be
maintained and managed in memory, but it is computed using a finite number M of
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previously generated solutions. This feature proves to be crucial, especially when the
approximation matrix is dense and/or high dimensional problems are handled. For the
proposed approach, under assumptions similar to the ones made for L-BFGS in the
strongly convex scalar case, we stated properties of R-linear convergence to the Pareto
optimality of the produced sequence of points.

The results of thorough computational experiments show that the new limitedmem-
ory algorithm consistently outperforms the state-of-the-art Newton andQuasi-Newton
methods for MOO. Moreover, we show the substantial benefits of using the proposed
algorithm as local search procedure within a global optimization framework.
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A Basic Results

In this appendix, we propose a further analysis on problem (2) and proofs of technical
results used in the paper.

A.1 Quasi-Newton direction problem

Problem (2) can be re-written as a quadratically-constrained convex one:

min
t∈R
d∈Rn

t

s.t. ∇ f j (x̄)
T d + 1

2
dT B jd − t ≤ 0, ∀ j ∈ {1, . . . ,m}.
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In this case, the Lagrangian function is of the following form:

L (t, d, λ) = t +
m∑
j=1

λ j

[
∇ f j (x̄)

T d + 1

2
dT B jd − t

]
,

where λ1, . . . , λm are the Lagrange multipliers. Denoting by λ ∈ R
m the vector of all

the Lagrange multipliers, we also introduce the dual problem:

max
λ∈Rm

inf
t∈R
d∈Rn

L (t, d, λ)

s.t. λ ≥ 0.

As already mentioned in Sect. 2.1, if Bj � 0 ∀ j ∈ {1, . . . ,m}, then problem (2)
has a unique solution. Moreover, the problem is convex and has a Slater point, i.e.,
(t, d) = (1, 0). Then, strong duality holds and the Karush-Kuhn-Tucker conditions
are sufficient and necessary for optimality. We thus obtain:

∂L (t, d, λ)

∂t
= 1 −

m∑
j=1

λ j = 0,
∂L (t, d, λ)

∂d
=

m∑
j=1

λ j
[∇ f j (x̄) + Bjd

] = 0,

which leads to

m∑
j=1

λ j = 1, d = −
⎡
⎣

m∑
j=1

λ j B j

⎤
⎦

−1

JF (x̄)T λ. (A1)

Considering equation (A1), given λ ≥ 0, we can state that in MOO the Quasi-Newton
direction depends on convex combinations of both the approximation matrices and the
gradients. In scalar optimization, the second formula of (A1) reduces to the classical
Quasi-Newton direction d(x̄) = −B−1∇ f (x̄), where f (·) indicates the objective
function.

Equation (A1) also leads to re-write the dual function; in particular, t disappears
since

∑m
j=1 λ j = 1, while d is substituted:

inf
t∈R
d∈Rn

L (t, d, λ) = −1

2
λT JF (x̄)

⎡
⎣

m∑
j=1

λ j B j

⎤
⎦

−1

JF (x̄)T λ
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Finally, using this last equation, we can retrieve the final form of the dual problem:

max
λ∈Rm

− 1

2
λT JF (x̄)

⎡
⎣

m∑
j=1

λ j B j

⎤
⎦

−1

JF (x̄)T λ

s.t.
m∑
j=1

λ j = 1, λ ≥ 0.

A.2 Proofs of technical results

Proposition 1

Proof First, the case sTk uk > 0 is trivial.
Then, let sTk uk ≤ 0 and let us consider

D (xk+1, sk) − ∇ f j (xk)
T sk,

with j ∈ {1, . . . ,m}. Considering that D(xk, sk) ≥ ∇ f j (xk)T sk by definition of
D(·, ·) and equation (8), we have that

D (xk+1, sk) − ∇ f j (xk)
T sk

≥ D (xk+1, sk) − D (xk, sk)

= D (xk+1, αkdLM (xk)) − D (xk, αkdLM (xk)) .

(A2)

In Algorithm 1, the Wolfe conditions are imposed at each iteration k (Line 6): in
particular,D (xk+1, dLM (xk)) ≥ σD (xk, dLM (xk)). Then, also consideringLemma2,
we obtain that

D (xk+1, αkdLM (xk)) − D (xk, αkdLM (xk))

= αk
[
D (xk+1, dLM (xk)) − D (xk, dLM (xk))

]

≥ αk (σ − 1)D (xk, dLM (xk)) > 0,

(A3)

where the last inequality comes from the fact that αk > 0, σ − 1 < 0 and
D (xk, dLM (xk)) < 0. Using (A2) and (A3), we conclude that

D (xk+1, sk) − ∇ f j (xk)
T sk > 0. (A4)

Since we have considered a generic j ∈ {1, . . . ,m}, it trivially follows that this last
equation is verified for all j .

Now, given (4), which is valid for the Lagrange multipliers vector λLM (xk), and
(A4), we can state that

m∑
j=1

λLM
j (xk)

[
D (xk+1, sk) − ∇ f j (xk)

T sk
]

> 0.
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Then, if the second formula in (19) is used, ρk > 0. �

B Proofs of Wolfe line search analysis

Proposition 2

Proof Given F continuously differentiable and dk descent direction for F at xk and
recalling Lemma 4, we can state that there exists ε > 0 such that, for all α ∈ (0, ε],
we have

F (xk + αdk) < F (xk) + γα JF (xk)dk ≤ F (xk) + 1γαD (xk, dk) , (B1)

where the last inequality follows from Remark 1. We now assume, by contradiction,
that for all α > 0 we have

F (xk + αdk) < F (xk) + 1γαD (xk, dk) .

This last result indicates that we have {xk + αdk | α > 0} ⊆ LF (F(xk)), which is
absurd since Assumption 1 holds. Therefore, there exists α̂ > ε and ĵ ∈ {1, . . . ,m}
such that

f ĵ
(
xk + α̂dk

) = f ĵ (xk) + γ α̂D (xk, dk) (B2)

and, by the continuity of F , equation (B1) holds for all α < α̂.
Using the Mean-value Theorem, we have that

f ĵ
(
xk + α̂dk

) = f ĵ (xk) + α̂∇ f ĵ
(
xk + t α̂dk

)T
dk, (B3)

with t ∈ (0, 1). Combining (B2) and (B3) we get

∇ f ĵ
(
xk + t α̂dk

)T
dk = γD (xk, dk) > σD (xk, dk) , (B4)

where the last inequality follows from the fact that σ > γ and D (xk, dk) < 0.
By definition of D(·, ·), we have the following condition:

D
(
xk + t α̂dk, dk

) ≥ ∇ f ĵ
(
xk + t α̂dk

)T
dk .

Using the latter and (B4), we obtain that

D
(
xk + t α̂dk, dk

)
> σD (xk, dk) .

Then, by the continuity of D(·, ·), there exists an interval [αl , αu] ⊆ (
0, α̂

)
such that,

for all α ∈ [αl , αu], we have that

D (xk + αdk, dk) > σD (xk, dk) .
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Moreover, since for all α ∈ [
0, α̂

]
equation (20) holds and [αl , αu] ⊆ (

0, α̂
)
, the proof

is complete. �
Lemma 5

Proof (1) Since α0
u = ∞ and αt

u < ∞, the interval upper bound has been updated
at least once though Line 4. Let t̄ be the iteration in which this update takes place: it
follows that 0 ≤ t̄ < t . In this case, we have that

∃ j
(
α t̄

)
∈ {1, . . . ,m} s.t. f j

(
α t̄

)(xk + α t̄ dk) > f j
(
α t̄

)(xk) + γα t̄D(xk, dk)

and

α t̄+1
u = α t̄ .

Then, it trivially follows that equation (22) holds for α t̄+1
u .

Now, suppose that t̄ + 1 < t and consider the iteration t̄ + 1. By the instructions
of the algorithm, α t̄+2

u is updated either by α t̄+2
u = α t̄+1 (Line 4) or α t̄+2

u = α t̄+1
u

(Line 7). The first case is identical to the one of iteration t̄ . In the second case, since
(22) is satisfied for α t̄+1

u , it is also for α t̄+2
u . For t > t̄ + 2, the property follows by

induction.
(2) Given σ ∈ (0, 1) and D(xk, dk) < 0, it is easy to prove that (23) and (24) hold

for α0
l = 0.

Then, consider the first iteration of Algorithm 3. Similarly to the upper bound, α1
l

is set equal to either α0
l (Line 5) or α0 (Line 9). The latter case occurs if

F(xk + α0dk) ≤ F(xk) + 1γα0D(xk, dk)

and

D(xk + α0dk, dk) < σD(xk, dk).

Thus, it simply follows that conditions (23) and (24) are satisfied in both cases.
For t > 1, we get the thesis by induction. �

Proposition 3

Proof By contradiction, we assume that the thesis is false, i.e., the algorithm does not
stop in a finite number of iterations.

First, we consider the case in which αt
u = ∞ for all t , i.e., the interval upper bound

is never updated. In this case, by the instructions of Algorithm 3, the Wolfe sufficient
decrease condition is always satisfied, i.e., for each step size αt we have that

F
(
xk + αt dk

) ≤ F(xk) + 1γαtD (xk, dk) . (B5)
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By Assumption 2.a, for all t , if αt
u = ∞, then αt is updated according to (25). Using

the latter, we obtain that

αt ≥ ηmax
{
αt
l , α

0
}

≥ ηαt
l . (B6)

Moreover, Line 9 is executed at every iteration, i.e., αt
l = αt−1. Then, (B6) turns into

αt ≥ ηαt−1 ≥ η2 max
{
αt−1
l , α0

}
≥ . . . ≥ (η)t α0.

Since η > 1 and α0 = 1, it follows that limt→∞ αt = ∞.

Then, there exists an infinite sequence of points {xk + αdk}α≥α0 satisfying (B5).
This fact is in contradiction with Assumption 1.

Now, we consider the case in which ∃ t̃ such that α t̃
u ≤ M . Then, the bounded and

monotone sequences {αt
l }t≥t̃ , with αt

l ≥ 0, and {αt
u}t≥t̃ , with αt

u ≤ M , are generated.
From Lemma 5, it follows that, for t ≥ t̃ ,

∃ j
(
αt
u

)
s.t. f j(αt

u)

(
xk + αt

udk
)

> f j(αt
u)

(xk) + γαt
uD (xk, dk) , (B7)

∀ j ∈ {1, . . . ,m}, f j
(
xk + αt

l dk
) ≤ f j (xk) + γαt

lD (xk, dk) . (B8)

Let T ⊆ {t̃, t̃ + 1, . . .} be a subsequence such that, for all t ∈ T , j
(
αt
u

) = ĵ .
By the instructions of the algorithm, the upper and lower bounds are updated in one

of the following ways:

• αt+1
u = αt , αt+1

l = αt
l ;

• αt+1
u = αt

u , α
t+1
l = αt .

In the first case, we can state that

max
{(

αt − αt
l

)
,
(
αt
u − αt)} = max

{(
αt+1
u − αt+1

l

)
,
(
αt
u − αt+1

u

)}

≥ αt+1
u − αt+1

l .

(B9)

An analogous result can be also achieved for the second case. Using (B9) andAssump-
tion 2.b, we obtain that

αt+1
u − αt+1

l ≤ max
{(

αt − αt
l

)
,
(
αt
u − αt)} ≤ δ

(
αt
u − αt

l

)
.

Recalling that δ ∈ [1/2, 1), {αt
l } and {αt

u} are monotone and bounded sequences and
that, for all t , we have αt

l ≤ αt ≤ αt
u , the above equation implies that αt

u − αt
l goes to

zero as t → ∞, with t ∈ T . Moreover, it follows that

lim
t→∞
t∈T

αt
u = lim

t→∞
t∈T

αt
l = lim

t→∞
t∈T

αt = ᾱ. (B10)
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Given (B7) and (B8), the definition of ĵ and the continuity of F , by taking the limit
for t → ∞, with t ∈ T , we obtain that

f ĵ (xk + ᾱdk) = f ĵ (xk) + γ ᾱD (xk, dk) . (B11)

Taking into account this result and (B7), we have that, for all t ∈ T , αt
u > ᾱ.

On the other hand, for t ∈ T , equation (B7) can be re-written in the following way:

f ĵ
(
xk + αt

udk
)

> f ĵ (xk) + γ
(
ᾱ + αt

u − ᾱ
)
D (xk, dk) .

Using (B11) and by simple algebraic manipulations we get

f ĵ
(
xk + αt

udk
)

> f ĵ (xk + ᾱdk) + γ
(
αt
u − ᾱ

)
D (xk, dk)

and, then,

f ĵ
(
xk + αt

udk
) − f ĵ (xk + ᾱdk)

αt
u − ᾱ

> γD (xk, dk) .

Now, by taking the limit for t → ∞, with t ∈ T , and recalling (B10) and the
continuous differentiability of F , we obtain that

∇ f ĵ (xk + ᾱdk)
T dk ≥ γD (xk, dk) . (B12)

Since D (xk + ᾱdk, dk) ≥ ∇ f ĵ (xk + ᾱdk)T dk by definition of D(·, ·), σ > γ and
D (xk, dk) < 0, from (B12) we have that

D (xk + ᾱdk, dk) > σD (xk, dk) . (B13)

However, from Lemma 5, it follows that

D
(
xk + αt

l dk, dk
)

< σD (xk, dk) .

By taking the limit for t → ∞, with t ∈ T , and recalling (B10) and the continuity of
D(·, ·), we get from the last equation that

D (xk + ᾱdk, dk) ≤ σD (xk, dk) .

The latter is in contradiction with (B13). We thus get the thesis. �

C Definition of new test problems

In this appendix, we introduce the new convex test problem which we call MAN_2.
Moreover, we report the formulation of the rescaled versions of MAN_1 [21], FDS_1
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[8] and MOP_2 [33]. We remind that the reported lower and upper bounds were only
used to choose the starting points for the algorithms (Sect. 5.1.2).

• MAN_2:

min
x∈Rn

f1(x) =
n∑

i=1

i(xi − i)2

n2

f2(x) =
n∑

i=1

e−xi + xi

f3(x) =
n∑

i=1

ex
2
i

, x ∈ [−1, 1]n .

• M-MAN_1:

min
x∈Rn

f1(x) =
n∑

i=1

(xi − i)2

n

f2(x) =
n∑

i=1

e−xi + xi

, x ∈ [−10, 10]n .

• M-FDS_1:

min
x∈Rn

f1(x) =
n∑

i=1

i(xi − i)4

n4

f2(x) = e
∑n

i=1 xi /n + ‖x‖22
f3(x) =

n∑
i=1

i(n − i + 1)e−xi

n(n + 1)

, x ∈ [−2, 2]n .

• M-MOP_2:

min
x∈Rn

f1(x) = 1 − e−∑n
i=1(xi−1/

√
n)2/n

f2(x) = 1 − e−∑n
i=1(xi+1/

√
n)2/n

, x ∈ [−4, 4]n .
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