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Each year, the editorial board of Computational Optimization and Applications 
selects a paper from the preceding year’s publications for the Best Paper Award. In 
2021, 88 papers were published in the journal. This article highlights the research 
related to the award winning work of Christian Kanzow and Theresa Lechner 
(University of Würzburg) in their paper “Globalized inexact proximal Newton-
type methods for nonconvex composite functions,” published in volume 78, pages 
377–410.

The paper [6] considers the composite optimization problem

with f ∶ ℝ
n
→ ℝ being (twice) continuously differentiable (not necessarily convex) 

and � ∶ ℝ
n
→ ℝ ∪ {∞} convex (possibly nonsmooth and extended-valued.) Proxi-

mal methods compute a sequence {xk} such that xk+1 is a solution or a stationary 
point (at least inexactly) of the subproblem

where only f is linearized around the current iterate xk , and Hk is a suitable approxi-
mation of the (not necessarily existing) Hessian ∇2f (xk) . The classical proximal gra-
dient method corresponds to the choice Hk = �kI for all k with some (penalty or 
line search parameter) 𝛾k > 0 , whereas Hk = ∇2f (xk) leads to the proximal Newton 
method, and Hk ≈ ∇2f (xk) with a (limited memory) quasi-Newton approximation of 
the Hessian is naturally called a (limited memory) proximal quasi-Newton method.

In principle, the proximal gradient method has the major advantage that the sub-
problems (1) can be solved very efficiently (even analytically) for some practically 
important proximal functions � . In general, this is not true for the proximal Newton 
subproblem, so that iterative methods have to be used in order to solve the subprob-
lems themselves, which causes more work in each step than for the proximal gradi-
ent method. On the other hand, the proximal Newton method typically requires less 
many (outer) iterations. Moreover, in those situations where the function � belongs 
to a class where, in any case, the solution of the proximal gradient subproblem 

min f (x) + �(x), x ∈ ℝ
n

(1)min f (xk) + ∇f (xk)T (x − xk) +
1

2
(x − xk)THk(x − xk) + �(x), x ∈ ℝ

n,
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cannot be computed analytically or efficiently, the overhead for computing an inex-
act solution of the proximal Newton subproblems seems to be minor.

For a convergence theory of the proximal gradient method, we refer to the excel-
lent book [1] by Beck for more details, where f is assumed to satisfy the standard 
assumptions for proving nice global convergence results, in particular, f is supposed 
to be convex with ∇f  satisfying a global Lipschitz condition. (The global Lipschitz 
assumption on the gradient is rather annoying and there is currently quite some 
research in order to overcome this problem.) Since the proximal gradient method 
reduces to the standard steepest descent method for the particular case where � ≡ 0 , 
the rate-of-convergence is typically slow (sublinear). On the other hand, proxi-
mal Newton and quasi-Newton methods are much faster (locally) convergent, see, 
e.g., [9, 13, 15] and references therein. Typically, the underlying approaches either 
assume that f is (strongly) convex or that a positive definite Hessian approximation 
is used, so that the resulting subproblems (1) still have a (unique) solution.

The motivation for the work in [6] is to deal with functions f which are, in gen-
eral, neither convex nor do their gradients satisfy a global Lipschitz condition. The 
interest in this situation partially results from the fact that these proximal-type meth-
ods are used to solve certain subproblems in an augmented Lagrangian setting for 
some classes of highly difficult optimization problems, and where these subprob-
lems are typically nonconvex, and the corresponding objective functions (the aug-
mented Lagrangians) do not satisfy a (global) Lipschitz condition, see [4, 5].

The method presented in [6] combines the (inexact) proximal Newton step with 
a proximal gradient step in a suitable way such that it inherits automatically the nice 
global convergence properties of the former (without using a Lipschitz assumption 
on the gradient) and the strong local convergence of the latter one. Note, however, 
that the proximal Newton subproblems do not need to have solutions (or inexact 
solutions), so some care has to be taken by introducing a suitable and computable 
criterion which decides when the method has to switch from a proximal Newton to a 
proximal gradient step. Numerical results indicate, however, that the method accepts 
the (inexact) proximal Newton step quite frequently, which is an important observa-
tion since otherwise the overall approach would be rather inefficient.

There exist already some subsequent works which may be viewed as modifi-
cations or improvements of the paper [6]. First of all, the PhD thesis [8] contains 
improved convergence results based on the theory of Kurdyka-Łojasiewicz func-
tions. The report [7] presents a regularized quasi-Newton method for composite 
optimization which incorporates second-order information in a very efficient way 
into the proximal term by using ideas from [2] and the compact representation of 
limited memory quasi-Newton matrices [3]. The basic idea behind this approach 
is the fact that solutions of a limited memory proximal quasi-Newton subproblem 
can be obtained from the solution of the corresponding proximal gradient sub-
problem using only some algebraic manipulations together with the solution of a 
small-dimensional and strongly monotone nonlinear (though nonsmooth) system of 
equations.

A trust-region modification, based on a nonsmooth reformulaton of the cor-
responding stationarity conditions, is presented in [12] (note that, in principle, a 
trust-region strategy avoids the problem that the corresponding subproblems may 



725

1 3

COAP 2021 Best Paper Prize  

not have a solution). The paper [10] uses a regularization strategy in order to 
have strongly convex and hence solvable subproblems (for nonconvex f, for con-
vex functions f, the situation is easier, see [11] for a recent contribution). Another 
modification, where the Newton direction is computed only on a suitable sub-
space (and, hence, easier to obtain) is considered in [16] for the particular case of 
� being the �q-quasi norm with q ∈ (0, 1) . Finally, an extension to Hilbert space 
can be found in [14].
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in continuous optimization and related areas.
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