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Each year, the editorial board of Computational Optimization and Applications 
selects a paper from the preceding year’s publications for the Best Paper Award. 
This article highlights the research related to the award winning paper of Nicolas 
Loizou (Johns Hopkins University) and Peter Richtárik (King Abdullah University 
of Science and Technology) whose award-winning paper “Momentum and stochas-
tic momentum for stochastic gradient, Newton, proximal point and subspace descent 
methods” was published in volume 77, pages 653–710.

Their paper [10] studies several classes of stochastic optimization algorithms 
enriched with the heavy ball momentum. Among the methods studied are: stochastic 
gradient descent (SGD), stochastic Newton (SN), stochastic proximal point (SPP) 
and stochastic dual subspace ascent (SDSA). This was the first time momentum var-
iants of several of these methods were studied.

The baseline first-order method for minimizing a differentiable function f is the 
gradient descent (GD) method, xk+1 = xk − �∇f (xk) , where 𝜔 > 0 is a stepsize [3]. 
For �-strongly convex function f with L-Lipschitz gradient, it is well-known that GD 
converges to the solution with the linear rate O((L∕�) log(1∕�)) [12]. To improve the 
convergence behavior of GD, Boris Polyak in a seminal work [14, 15] proposed to 
modify the update rule by introducing a (heavy ball) momentum term, �(xk − xk−1) , 
where 𝛽 > 0 is a momentum parameter. This leads to the GD method with momen-
tum, popularly known as the heavy ball method: xk+1 = xk − �∇f (xk) + �(xk − xk−1). 
More specifically, Polyak proved that with the correct choice of the stepsize � 
and the momentum parameter � , a local accelerated linear convergence rate of 
O(

√
L∕� log(1∕�)) can be achieved in the case of twice continuously differentiable 

�-strongly convex objective functions f with L-Lipschitz gradient [14, 15]. Since its 
original inception, the optimization community has focused on studying the proper-
ties of the heavy ball method in several settings [4, 7, 13].

The stochastic variant of the algorithm, the stochastic heavy ball method (also 
known as SGD with momentum), where only an unbiased estimator g(xk) of the true 
gradient ∇f (xk) is used in each step,

has been immensely popular in the machine learning community as it helps to speed 
up the training of modern machine learning models [6, 19, 20]. In these scenarios, 
it has been observed that the use of momentum on top of stochastic algorithms can 

xk+1 = xk − �g(xk) + �(xk − xk−1),
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significantly improve the training time and quality of the trained model. However, 
despite the popularity of the method and the considerable amount of work focusing 
on understanding its properties, the convergence behavior of the stochastic variants 
of the algorithm was not understood well.

In their paper [10], Loizou and Richtárik focus precisely on this and provide a 
robust theoretical analysis and understanding of how the heavy ball momentum 
interacts with the update rules of several popular stochastic optimization algo-
rithms. Their convergence analysis focuses on solving large-scale convex quad-
ratic problems where all methods under study (SGD, SN, SPP and SDSA) are 
equivalent [16]. In particular, they prove global non-asymptotic linear conver-
gence rates for all these stochastic methods and for various measures of success, 
including primal function values, primal iterates, and dual function values. This 
seems to be the first paper providing the analysis for momentum variants of SN, 
SPP and SDSA.

Loizou and Richtárik [10] provide several (global and non-asymptotic) linear con-
vergence results for the primal methods SGD/SN/SPP with momentum. A linear rate 
for the decay of the expected squared distance to the solution, �

�
‖xk − x∗‖2

�

�
 , where 

� is a positive definite matrix defining the norm, was established as well, for a range 
of stepsizes 𝜔 > 0 and momentum parameters � ≥ 0 . The same rate was proved to 
hold for i) the decay of the expected function suboptimality �

[
f (xk)

]
− f (x∗) of the 

stochastic optimization problem

where � is a random matrix defining the source of randomness, and for ii) the con-
vergence of the dual objective to the optimum in case of SDSA with momentum. No 
linear rates for any of these methods with momentum were known before.

Loizou and Richtárik [10] further study the decay of the larger quantity 
‖�

�
xk − x∗

�
‖2
�
 to zero. In this case, the authors established an accelerated linear 

rate, which depends on the square root of the condition number. This is a quadratic 
speedup when compared to the no-momentum methods as these depend on the con-
dition number. This is the first time an accelerated rate is obtained for the stochastic 
heavy ball method (mSGD). Prior to their work, no global non-asymptotic accel-
erated linear rates were established even in the non-stochastic setting (i.e., for the 
heavy ball method). In addition, under somewhat weaker conditions, the sublinear 
convergence rate O(1/k) of all primal momentum methods was proved for the Cesàro 
averages of the iterates and for �

[
f (x̂k)

]
− f (x∗) (here x̂k =

1

k

∑k−1

t=0
xt).

Moreover, Loizou and Richtárik [10] propose a novel concept, for which they 
coined the name stochastic momentum, aimed at decreasing the cost of perform-
ing the momentum step. Stochastic momentum is a stochastic (coordinate-wise) 
approximation of the deterministic momentum and hence is much less costly, which 
in some situations leads to computational savings in each iteration. The authors ana-
lyze the SGD, SN, and SPP methods with stochastic momentum and prove linear 
convergence rates. They also show that in some sparse data regimes, the overall 
complexity of SGD with stochastic momentum is better than the overall complexity 
of SGD with the classical deterministic momentum.

min
x∈ℝn

f (x) ∶= 𝔼
[
f
�
(x)

]
,
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As explained in their work, all proposed algorithms (with momentum or stochastic 
momentum) can be interpreted as sketch-and-project methods [5] for a solving consistent 
linear system. This interpretation of the algorithms allows for the recovery of a compre-
hensive array of well-known methods as special cases by a careful choice of the parame-
ters of the algorithms. To this end, [10] was the first paper to analyze momentum variants 
of several popular algorithms for solving large-scale linear systems, including the rand-
omized Kaczmarz method [18], randomized coordinate descent [8], Gaussian Kaczmarz 
[5], and their block variants.

Extensive numerical testing on artificial and real datasets, including data coming from 
average consensus problems, has also been presented in [10] to corroborate their theoreti-
cal results, and to demonstrate the practical benefits of adding the momentum term. More 
specifically, the authors evaluate the performance of the randomized Kaczmarz method 
with momentum and the randomized coordinate descent method with momentum for 
solving both synthetic consistent Gaussian systems and consistent linear systems with real 
matrices. It was also experimentally shown that the addition of the momentum accelerates 
the pairwise randomized gossip algorithm for solving the average consensus problem [1].

Since the publication of this paper in Computational Optimization and Applications, 
the proposed proof techniques and ideas have already served as a starting point for the 
analysis of SGD with momentum and the development of SN, SPP and SDSA methods 
with momentum for more general problem classes (beyond special quadratics), including 
convex and also non-convex optimization problems [2, 9, 11, 17].

Finally, this work provides a bridge across several communities, including numerical 
linear algebra, stochastic optimization, machine learning, computational geometry, fixed 
point theory, applied mathematics and probability theory.
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