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Proof of Proposition 2
For clarity, we treat each option separately.

Option A: Assume that the application of Option A is stopped at some point before an

associated stopping condition is encountered. At that point, the increasing and decreasing slopes

of all sets whose cost is not modified by the application of this option remain unchanged. Moreover,

the upper sets remain upper, their decreasing slopes remain unchanged, and the increasing slope

of the increasing set remains unchanged, too. Therefore, the ∆P
∆f ratios of Options A and D remain

unchanged, too. Since Option A was selected for application at the beginning of the iteration, its

ratio was not greater than the ratio of Option C, i.e.,

a−mo ≤ an− em

m+ n
=⇒ am+an−m2o−mno ≤ an−em =⇒ a+e ≤ mo+no =⇒ o ≥ a+ e

m+ n
. (1)

In order to prove that the ∆P
∆f ratio of Option B can not be smaller than the ratio of Option

A at the current solution, we consider two cases. The first is when the increasing set of Option A

qualifies as decreasing for Option B. Since none of the stopping conditions of Option A has been

encountered, the partial solution of this set corresponds to a point different than the two endpoints

of the line segment connecting the two adjacent variables whose values are being changed in the

associated upper hull. Therefore, the decreasing slope of the increasing set is equal to its increasing

slope, o. If the ∆P
∆f ratio of Option B hasn’t changed since the beginning of the iteration, it is still

greater or equal to the ratio of Option A. If it has, we consider two subcases. The first is when

the increasing set of Option A was internal at the beginning of the iteration. This, together with

the fact that the ratio of Option B has changed, implies that the increasing set of Option A has

different decreasing slope now and qualifies as decreasing for Option B. Setting the new ratio of

Option B smaller than the ratio of Option A, we get: a−mo > nu0− e. Since the decreasing slope
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of the increasing set of Option A is equal to its increasing slope, we have u0 = o and the previous

inequality becomes a−mo > no−e =⇒ o < a+e
m+n . The second subcase is when the increasing set of

Option A was lower at the beginning of the iteration. In this subcase, the number of lower sets drops

from n to n− 1, as soon as the cost of this set increases from its initial value. Since the increasing

set of Option A qualifies as decreasing for Option B, the new ∆P
∆f ratio of Option B is equal to

u0(n−1)−e0. Since u0 = o and e0 = e−o, this expression is equal to o(n−1)− (e−o) = no−e, and
again, o < a+e

m+n needs to hold in order for Option’s B ratio to be smaller than the ratio of Option

A. This inequality however, contradicts inequality (1); therefore the ratio of Option B can not be

smaller than the ratio of Option A at the current solution. The second case is when the increasing

set of Option A does not qualify as decreasing for Option B. In this case, the non-lower set with

the minimum decreasing slope is still the same. If the increasing set of Option A was internal at

the beginning of the iteration, then the ∆P
∆f ratio of Option B is still the same. If it was lower, the

new ratio of Option B is equal to u(n− 1)− e0 = u(n− 1)− (e− o) = nu− e+ o−u. Note however,

that o ≥ u, otherwise the increasing set of Option A would be selected as decreasing for Option B.

Thus, we have nu− e+ o− u ≥ nu− e; hence, the ratio of Option B can not be smaller than what

it was at the beginning of the iteration. Therefore, the ratio of Option B can not be smaller than

the ratio of Option A at the current solution.

Consider now Options C and E. If the increasing set of Option A was internal at the beginning

of the iteration, then clearly the ∆P
∆f ratios of Options C and E remain unchanged at the current

solution. Assume now that the increasing set was lower at the beginning of the iteration. In this

case, the number of lower sets drops from n to n− 1, as soon as the cost of this set increases from
its initial value. Its increasing slope must be nonnegative, otherwise Option D would have been

selected over Option A at the beginning of the iteration. Therefore, the new sum of increasing slopes

of the lower sets at the current solution is e0 ≤ e, which means that −e0 ≥ −e. Hence, the new ∆P
∆f

ratio of Option E is not smaller than before. Additionally, the new ∆P
∆f ratio of Option C is equal to

a(n−1)−e0m
m+n−1 = a(n−1)−m(e−o)

m+n−1 . In order for Option’s C ratio to be smaller than the ratio of Option A

at the current solution, we must have a−mo > a(n−1)−m(e−o)
m+n−1 =⇒ am+an−a−m2o−mno+mo >

an− a− em+mo =⇒ a−mo−no > −e =⇒ o < a+e
m+n . This inequality however is in contradiction

with inequality (1); therefore the new ratio of Option C can not be smaller than the ratio of Option

A. Finally, note that the resource residual hasn’t changed since the beginning of the iteration.

Therefore, the situation in which the application of Option E was not feasible at the beginning of

the iteration, but is now, can not come up. This completes the proof of the proposition for the case

that the applied option is A.

Option B: Assume that the application of Option B is stopped at some point before an

associated stopping condition is encountered. In this case, it is easy to see that the ∆P
∆f ratios of

Options B and E remain unchanged. Using the fact that Option B was selected over Option C at

the beginning of the iteration, we get

u ≤ a+ e

m+ n
. (2)

2



The proof that Option A can not have smaller ∆P
∆f ratio when Option B is applied is symmetric

to the proof that Option B can not have smaller ∆P
∆f ratio when Option A is applied, and is not

repeated here, for space consideration. Consider now Options C and D. If the decreasing set of

Option B was internal at the beginning of the iteration, then clearly the ∆P
∆f ratios of Options C

and D remain unchanged at the current solution. Assume now that the decreasing set was upper

at the beginning of the iteration. In this case, the number of upper sets drops from m to m − 1,
as soon as the cost of this set decreases from its initial value. Since the value of the first objective

was the maximum possible for the value of the second objective at the beginning of the iteration,

Lemma 2, introduced in Section 2.3, holds; therefore, the decreasing slope of the decreasing set,

u, must be nonnegative. The sum of decreasing slopes of the upper sets at the current solution is

a0 = a − u. In order for Option’s D ratio to be smaller than the ratio of Option B, we must have

nu− e > a− u =⇒ u(n+ 1) > a+ e =⇒ u > a+e
n+1 . This inequality however, contradicts inequality

(2), since u is nonnegative, which implies that a + e is nonnegative, too; therefore, a+e
n+1 ≥ a+e

m+n .

Therefore, the new ratio of Option D can not be smaller than the ratio of Option B. Finally, the

new ∆P
∆f ratio of Option C is equal to

a0n−e(m−1)
m+n−1 = n(a−u)−e(m−1)

m+n−1 . In order for Option’s C ratio to

be smaller than the ratio of Option B at the current solution, we must have nu−e > n(a−u)−e(m−1)
m+n−1

=⇒ mnu + n2u − nu − em − en + e > an − nu − em + e =⇒ mu + nu − e > a =⇒ u > a+e
m+n .

This inequality however, contradicts inequality (2); therefore, the new ratio of Option C can not

be smaller than the ratio of Option B. Finally, note that the resource residual hasn’t changed since

the beginning of the iteration. Therefore, the situation in which the application of Option E was

not feasible at the beginning of the iteration, but is now, can not come up. This completes the

proof of the proposition for the case that the applied option is B.

Option C: Assume that the application of Option C is stopped at some point before an

associated stopping condition is encountered. At that point, the increasing and decreasing slopes

of all sets whose cost is not modified by the application of this option remain unchanged. Moreover,

the lower sets remain lower, their increasing slopes remain unchanged, the upper sets remain upper

and their decreasing slopes remain unchanged, too. Therefore, the ∆P
∆f ratios of Options A, B, C,

D and E remain unchanged, too, which means that the ratio of Option C is still the same. Finally,

note that the resource residual hasn’t changed since the beginning of the iteration. Therefore, the

situation in which the application of Option E was not feasible at the beginning of the iteration,

but is now, can not come up. This completes the proof of the proposition for the case that the

applied option is C.

Option D: Assume that the application of Option D is stopped at some point before an

associated stopping condition is encountered. At that point, the increasing and decreasing slopes

of all sets whose cost is not modified by the application of the option remain unchanged. Moreover,

the upper sets remain upper and their decreasing slopes remain unchanged. Therefore, the ∆P
∆f

ratios of Options A, B, C, D and E remain unchanged, too. Note additionally, that since Option D

was selected at the beginning of the iteration over Option C, we have a ≤ an−em
m+n =⇒ am+ an ≤

an − em =⇒ a ≤ −e. Therefore, the case in which Option E had smaller ∆P
∆f ratio since the
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beginning of the iteration but was not applied because the resource residual was not positive can

not come up. This completes the proof of the proposition for the case that the applied option is D.

Option E: Assume that the application of Option E is stopped at some point before an asso-
ciated stopping condition is encountered. At that point, the increasing and decreasing slopes of all

sets whose cost is not modified by the application of the option remain unchanged. Moreover, the

lower sets remain lower and their increasing slopes remain unchanged. Therefore, the ∆P
∆f ratios of

Options A, B, C, D and E remain unchanged, too, which means that the ratio of Option E is still

the same. This completes the proof of the proposition for the case that the applied option is E.

¤
Proof of Lemma 1
Consider any LMCKE instance and assume that the interval [L,U ] containing the optimal costs

of the sets is known. For reasons of clarity, we call this the “original” instance. Assume now that

we want to solve the original LMCKE instance for a new value f 0 < f , where ∆f = f 0 − f is

arbitrarily close to 0. We call this the “modified” instance. Since the new interval [L0, U 0] must
have width which is marginally smaller than the width of the previous interval, at least one of the

following must hold: 1) U 0 < U , or 2) L0 > L. Therefore, we examine what happens when the

endpoints of the interval containing the optimal costs of the sets of the original LMCKE instance

are slightly perturbed. Consider the associated LMCK instance with lower bound L00 and upper
bound U 00 = L00 + f 0 on the cost of each set, where L00 is marginally smaller than L. The solution

procedure allocates initially a resource amount equal to L00 to each set. The order of the decision
variables in the multiple choice lists and the master list is the same as in the original instance.

We consider two subcases. If the resource residual at the optimal solution of the original LMCKE

instance is positive, then the increasing slope of every non-upper set in that solution is nonpositive.

Therefore, during the allocation of the remaining resource in the modified LMCKE instance, we

get an intermediate solution, in which the cost of some of the originally lower sets is equal to L00,
the cost of the remaining originally lower sets is equal to L, the cost of the originally internal sets

is the same as before, and the cost of the originally upper sets is equal to U 00. For the originally
lower sets which are lower in this solution, this is due to the fact that their increasing slope is not

positive when their cost is equal to L00. For the originally lower sets which are not lower in this
solution, this is due to the fact that their increasing slope is positive when their cost is equal to

L00, but nonpositive when their cost is equal to L. For the originally upper sets, this is due to the
fact that the upper bound is now U 00, instead of U . On the other hand, the originally internal
sets are not affected by the change on the two bounds; therefore, their costs assume their original

values. Hence, every non-upper set has nonpositive increasing slope, and the algorithm terminates,

which means that this solution is optimal for the associated LMCK instance with bounds L00 and
U 00. If the resource residual at the optimal solution of the original LMCKE instance is equal to 0,
consider the non-upper set in that solution with the most positive increasing slope (if such a set

exists, we call it the increasing set). During the allocation of the remaining resource in the modified

LMCKE instance, we get an intermediate solution, in which the cost of every set is the same as in
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the optimal solution of the first subcase. The resource residual is strictly positive in this solution;

therefore, it can be used to increase the cost of the increasing set. Since ∆f is arbitrarily close to 0,

the resource residual drops to 0 before the increasing slope of the increasing set changes. Then, the

algorithm terminates and this solution is optimal for the LMCK instance with bounds L00 and U 00.
At the optimal solution obtained in either of the two subcases, let n1 be the number of originally

lower sets whose cost is equal to L00 and ∆L = L00−L. Then, the number of lower sets is n1 and the
number of upper sets m, where m is the number of upper sets at the optimal solution of the original

LMCKE instance. With respect to the optimal solution of the original LMCKE instance, the cost

of the upper sets drops by |∆f |+ |∆L|, the cost of the n1 lower sets drops by |∆L|, the cost of the
increasing set (if it exists) increases by m(|∆f |+ |∆L|)+n1 |∆L|, and every other set has the same
cost as before. Let o be the increasing slope of the increasing set, a be the sum of decreasing slopes

of the upper sets and g be the sum of decreasing slopes of the n1 lower sets. The difference in total

profit with respect to the optimal solution of the original LMCKE instance is equal to −a(|∆f |+
|∆L|)− g |∆L|+ o(m(|∆f |+ |∆L|) + n1 |∆L|) = (a−mo)∆f + (a+ g −mo− n1o)∆L. Therefore,
∆P
∆f = a−mo+ (a+g−mo−n1o)∆L

∆f , where o ≥ 0. This expression holds when the increasing set does not
exist, too, since we can set o = 0 in that case. If this ratio is smaller than the ratio obtained when

Option A with the same increasing set is applied to the optimal solution of the original LMCKE

instance, we have a− om+ (a+g−mo−n1o)∆L
∆f < a− om ⇐⇒ (a+g−mo−n1o)∆L

∆f < 0. Note that, since

∆L and ∆f are both negative, this expression implies that the term (a+ g−mo−n1o) is negative,
too. Suppose that at the optimal solution of the original LMCKE instance we decrease the cost of

the upper and the same n1 lower sets by |∆L| and we allocate the recovered resource amount to the
same increasing set. The solution that we get is feasible for the original LMCKE instance, and the

resulting change in total profit is equal to o(m+n1) |∆L|−(a+g) |∆L| = −(a+g−mo−n1o) |∆L|,
which due to the above is strictly positive. This however is a contradiction, since the initial solution

is optimal for the original instance, which implies that we can not move to another feasible solution

with higher profit. Therefore, taking L00 < L does not lead to a marginal decrease in P per unit

decrease in f which is smaller than the one that can be achieved by taking L00 ≥ L. Consider now

the associated LMCK instance with upper bound U 00 and lower bound L00 = U 00− f 0 on the cost of
each set, where U 00 is marginally larger than U . The solution procedure allocates initially a resource
amount equal to L00 to each set. The order of the decision variables in the multiple choice lists and
the master list is the same as in the original instance. Assuming that the remaining resource is

enough, during its allocation in the modified LMCKE instance, we get an intermediate solution, in

which the cost of the originally lower sets is equal to L00, the cost of the originally internal sets is
the same as before, the cost of some of the originally upper sets is equal to U and the cost of the

remaining originally upper sets is equal to U 00. For the originally lower sets, this is due to the fact
that the lower bound is now L00, instead of L. For the originally upper sets which are not upper
in this solution, this is due to the fact that their increasing slope is nonpositive when their cost

is equal to U . For the originally upper sets which are upper in this solution, this is due to the

fact that their increasing slope is positive when their cost is equal to U , but their cost can not
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be increased beyond U 00, due to the upper bound constraint. On the other hand, the originally
internal sets are not affected by the change on the two bounds; therefore their costs assume their

original values. Note that since the cost of the lower sets now increases to L00 and the cost of some
of the originally upper sets increases to U 00, an extra resource amount is required for this solution.
We consider two subcases. If the resource residual at the optimal solution of the original LMCKE

instance is positive, this amount is available. Then, the algorithm terminates, due to the fact that

every non-upper set has nonpositive increasing slope, since it had nonpositive increasing slope with

same or smaller cost at the optimal solution of the original LMCKE instance. If not, then the cost

of the non-lower set which is increased last (if such a set exists, we call it the decreasing set) will

be smaller than before by this amount. Then, the algorithm terminates and the current solution

is optimal for the associated LMCK instance with bounds L00 and U 00. At the solution obtained in
either of the two subcases, let m1 be the number of originally upper sets whose cost is now equal

to U 00 and ∆U = U 00 − U. The number of upper sets in this solution is m1 and the number of

lower sets n, where n is the number of lower sets at the optimal solution of the original LMCKE

instance. With respect to the optimal solution of the original LMCKE instance, the cost of the

lower sets increases by |∆f |+∆U , the cost of the m1 upper sets increases by ∆U , the cost of the

decreasing set (if it exists) decreases by n(|∆f |+∆U) +m1∆U , and every other set has the same

cost as before. Let u be the decreasing slope of the decreasing set, e be the sum of increasing slopes

of the lower sets and g be the sum of increasing slopes of the m2 upper sets. Following the same

reasoning as Lemma 2, introduced in Section 2.3, we can easily prove that u ≥ 0. The difference
in total profit with respect to the optimal solution of the original LMCKE instance is equal to

e(|∆f |+∆U)+g∆U−u(n(|∆f |+∆U)+m1∆U) = (nu−e)∆f+(e+g−nu−m1u)∆U ; therefore,
∆P
∆f = nu− e+ (e+g−nu−m1u)∆U

∆f . This expression holds when the decreasing set does not exist, too,

since we can set u = 0 in that case. If this ratio is smaller than the ratio obtained when Option

B with the same decreasing set is applied to the optimal solution of the original LMCKE instance,

we have nu − e + (e+g−nu−m1u)∆U
∆f < nu − e ⇐⇒ (e+g−nu−m1u)∆U

∆f < 0. Note that since ∆U is

positive and ∆f negative, this expression implies that the term (e + g − nu − m1u) is positive.

Suppose that at the optimal solution of the original LMCKE instance, we increase the cost of the

same m1 upper and the lower sets by ∆U and we decrease the cost of the same decreasing set

by (n +m1)∆U . Note that the solution that we get is feasible and the resulting change in total

profit is equal to (e + g)∆U − u(n +m1)∆U = (e + g − nu −m1u)∆U , which due to the above

is strictly positive. This however is a contradiction, since the initial solution is optimal for the

original LMCKE instance, which means that we can not move to another feasible solution with

higher profit. Therefore, neither taking U 00 > U leads to a marginal decrease in P per unit decrease

in f which is smaller than the one that can be achieved by taking U 00 ≤ U. This completes the

proof of the lemma. ¤
Proof of Proposition 3
Consider any LMCKE instance. For reasons of clarity, we call this the “original” instance.

Assume that the interval [L,U ] containing the optimal costs of the sets is known, and without
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loss of generality that L = mincost, U = maxcost and f = U − L. Assume also that we want

to solve the original LMCKE instance for a new value f 0 < f , where ∆f = f 0 − f is arbitrarily

close to 0. We call this the “modified” instance. Since the new interval [L0, U 0] must have width
which is marginally smaller than the width of the previous interval, and additionally, L0 ≥ L and

U 0 ≤ U from Lemma 1, we distinguish three cases: 1) L0 = L and U 0 < U, 2) L0 > L and U 0 = U,

and 3) L0 > L and U 0 < U . If case 1 is true, consider the associated LMCK instance, after

adding the constraints Ck ≥ L and Ck ≤ U 0, for all k ∈ S. The order of the decision variables in

the multiple choice lists and the master list is the same as in the original instance. The solution

procedure allocates initially a resource amount equal to L to each set. During the allocation of

the remaining resource, we get an intermediate solution in which the cost of every non-upper set

is the same as before, and the cost of every upper set is equal to U 0. The number of upper sets in
this solution is equal to the number of upper sets at the optimal solution of the original LMCKE

instance. If this number is m, then the resource residual of the current solution is larger than

the resource residual of that solution by m |∆f |. We distinguish two subcases. If the resource
residual at the optimal solution of the original LMCKE instance is positive, then the increasing

slope of every non-upper set in that solution is nonpositive. Since the cost of every non-upper set

at the current solution is the same as in that solution, the algorithm terminates. Clearly, this is

equivalent to the application of Option D. If the resource residual at the optimal solution of the

original LMCKE instance is equal to 0, then there may exist a non-upper set at the current solution

with positive increasing slope. In this subcase, the resource residual of the current solution is equal

to m |∆f | . Thus, the algorithm allocates this amount to the non-upper set with the maximum

positive increasing slope. For ∆f sufficiently close to 0, the resource residual drops to 0 before the

increasing slope of this set changes, and the algorithm terminates. If this is the unique lower set,

it is clear that this move is equivalent to the application of Option C. If not, it is equivalent to

the application of Option A. If the current solution does not have a non-upper set with positive

increasing slope, the algorithm terminates and this is equivalent to the application of Option D.

Note that the optimal solution of the modified LMCKE instance does not change when we add the

constraints Ck ≥ L and Ck ≤ U 0. Additionally, the solution at hand satisfies all the constraints
of the modified LMCKE instance, since the costs of all sets lie in an interval [L,U 0], whose width
does not exceed f 0. Therefore, the current solution is optimal for the modified LMCKE instance,
which implies that the minimum marginal decrease in P per unit decrease in f is achieved through

the application of one of the options A, C or D. If case 2 is true, consider the associated LMCK

instance, after adding the constraints Ck ≥ L0 and Ck ≤ U , for all k ∈ S. The order of the decision

variables in the multiple choice lists and the master list is the same as in the original instance.

The solution procedure allocates initially a resource amount equal to L0 to each set. An extra
resource amount equal to n(L0 − L) is required to increase the cost of the n lower sets from L to

L0. We distinguish two subcases. The first subcase is when the resource residual at the optimal
solution of the original LMCKE instance is equal to 0. Consider the non-lower set containing the

variable that was increased last during the application of the algorithm on the original LMCKE
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instance. When the remaining resource is allocated to the sets in the current solution, the cost

of this set assumes a value which is smaller than its original by n(L0 − L). For this solution, the

resource residual is equal to 0, and the algorithm terminates. When the cost of a set is increased,

its increasing slope at the beginning of this increase becomes its decreasing slope at the end. Since

this set was increased last, it has the minimum decreasing slope among all non-lower sets in this

solution. If this is the unique upper set, then clearly this is equivalent to the application of Option

C. Otherwise, it is equivalent to the application of Option B. The second subcase that we consider

is when the resource residual at the optimal solution of the original LMCKE instance is positive.

The extra resource amount needed to increase the cost of the lower sets from L to L0 is available in
this subcase. Therefore, during the allocation of the remaining resource we get a solution in which

the cost of each originally lower set is equal to L0 and the cost of each originally non-lower set is
the same as before. At that point, all lower sets have nonpositive increasing slopes, since they had

nonpositive increasing slopes with smaller cost, too, and the increasing slopes of all internal sets

remain nonpositive, since their cost is the same as before. Therefore, the algorithm terminates.

This however is equivalent to the application of Option E. Note that the optimal solution of the

modified LMCKE instance does not change when we add the constraints Ck ≥ L0 and Ck ≤ U.

Additionally, the solution at hand satisfies all the constraints of the modified LMCKE instance,

since the costs of all sets lie in an interval [L0, U ], whose width does not exceed f 0. Therefore, this
solution is optimal for the modified LMCKE instance, which means that the minimum marginal

decrease in P per unit decrease in f is achieved through the application of one of the options B, C

or E. If case 3 is true, consider the associated LMCK instance, after adding the constraints Ck ≥ L0

and Ck ≤ U 0, for all k ∈ S. We distinguish three subcases: 3a) n(L0 − L) = m(U − U 0), 3b)
n(L0−L) < m(U −U 0), and 3c) n(L0−L) > m(U −U 0). Consider subcase 3a first. The order that
the decision variables appear in the multiple choice lists and the master list is the same as before.

During the application of the solution procedure, we get an intermediate solution in which the costs

of the originally lower sets are equal to L0, the costs of the originally internal sets are the same as
before, and the costs of the originally upper sets are equal to U 0. If the resource residual at the
optimal solution of the original LMCKE instance is equal to 0, then this is true for this solution,

too, since n(L0 − L) = m(U − U 0). If not, then all lower sets have nonpositive increasing slopes,
since they had nonpositive increasing slopes with smaller costs, too, and the increasing slopes of

all internal sets remain nonpositive, since their costs are the same as before. This implies that the

current solution is optimal and the algorithm terminates, which means that the optimal solution

in subcase 3a can be obtained through the application of Option C. Consider now subcase 3b. At

some point during the application of the solution procedure we get an intermediate solution in

which the costs of the lower sets are equal to L0, the costs of the upper sets are equal to U 0 and
the costs of the internal sets are the same as before. Since n(L0 − L) < m(U − U 0), the resource
residual of this solution is positive. If the resource residual at the optimal solution of the original

LMCKE instance is positive, then the algorithm terminates. This is because all lower sets have

nonpositive increasing slopes, since they had nonpositive increasing slopes with smaller costs, too,
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and the increasing slopes of all internal sets remain nonpositive since their costs are the same

as before. Let e be the sum of increasing slopes of the lower sets, a be the sum of decreasing

slopes of the upper sets, z = U − U 0 and w = L0 − L. With respect to the optimal solution of

the original LMCKE instance, ∆P is equal to ew − az, and ∆f is equal to -(w + z). Therefore,

the “equivalent” ratio ∆P
∆f is equal to az−ew

w+z . Assume that the ratio of Option D, when applied

to the optimal solution of the original LMCKE instance, is smaller than the ratio of Option C,

i.e., that a < an−em
m+n ⇐⇒ am + an < an − em ⇒ a < −e. Then, the ratio of Option D is also

smaller than the “equivalent” ratio, since a < az−ew
w+z becomes aw + az < az − ew ⇐⇒ a < −e,

which holds from above. If the ratio of Option D is not smaller than the ratio of Option C, we

have a ≥ −e. In this case, the “equivalent” ratio can not be smaller than the ratio of Option C,
since from an−em

m+n > az−ew
w+z , we get anw + anz − emw − emz > amz + anz − emw − enw ⇐⇒

nw(a + e) > mz(a + e), which is a contradiction for subcase 3b, since a + e ≥ 0. If the resource
residual at the optimal solution of the original LMCKE instance is equal to 0, there may exist

a non-upper set with positive increasing slope. Therefore, the positive resource residual, which is

equal tom(U−U 0)−n(L0−L) = mz−nw, can be allocated to the non-upper set with the maximum
increasing slope (let this slope be equal to o), in order to increase total profit. For ∆f sufficiently

close to 0, the budget residual drops to 0 before the increasing slope of this set changes and the

algorithm terminates. With respect to the optimal solution of the original LMCKE instance, ∆P is

equal to ew−az+o(mz−nw), and ∆f is equal to -(w+z). Therefore, the “equivalent” ratio ∆P
∆f is

equal to (no−e)w+(a−mo)z
w+z . Assume that the ratio of Option A, when applied to the optimal solution of

the original LMCKE instance with the same increasing set, is smaller than the ratio of Option C, i.e.

that a−mo < an−em
m+n ⇐⇒ am+an−m2o−mno < an−em⇐⇒ a+e < o(m+n)⇐⇒ o > a+e

m+n . Then,

the ratio of Option A is also smaller than the “equivalent” ratio, since a−mo < (no−e)w+(a−mo)z
w+z

becomes aw + az − mow − moz < now − ew + az − moz ⇐⇒ a + e < o(m + n) ⇒ o > a+e
m+n ,

which holds from above. If the ratio of Option A is not smaller than the ratio of Option C, we

have o ≤ a+e
m+n . Then, the “equivalent” ratio can not be smaller than the ratio of Option C, since

an−em
m+n > (no−e)w+(a−mo)z

w+z becomes anw + anz − emw − emz > mnow + n2ow − emw − enw +

amz + anz −m2oz −mnoz ⇐⇒ anw + enw −mnow − n2ow > emz + amz −m2oz −mnoz ⇐⇒
nw(a + e −mo − no) > mz(a + e −mo − no). Since o ≤ a+e

m+n , the quantity in the parenthesis is

nonnegative; therefore, this is a contradiction for subcase 3b. Note that the optimal solution of the

modified LMCKE instance does not change when we add the constraints Ck ≥ L0 and Ck ≤ U 0.
Additionally, the solution at hand satisfies all the constraints of the modified LMCKE instance,

since the costs of all sets lie in an interval [L0, U 0], whose width does not exceed f 0. Therefore,
the current solution is optimal for the modified LMCKE instance. Since we can also reach the

optimal solution through the application of one of the options A, C or D, one of the five options

always leads to the minimum marginal decrease in P per unit decrease in f in subcase 3b. For

subcase 3c, consider the solution obtained when the cost of the originally lower sets becomes equal

to L0, the cost of each originally internal set equal to what it was at the optimal solution of the
original LMCKE instance, and the cost of the originally upper sets equal to U 0. Note that an extra
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resource amount equal to n(L0 − L) is needed to increase the cost of the lower sets from L to L0

and an extra resource amount equal to m(U − U 0) is recovered due to the fact that the cost of
the upper sets is not increased beyond U 0. If the resource residual at the optimal solution of the
original LMCKE instance is positive, it can be used to cover the difference between n(L0 −L) and

m(U−U 0). At that point, the algorithm terminates and this is the optimal solution to the modified
LMCKE instance. This is because all lower sets have nonpositive increasing slopes, since they had

nonpositive increasing slope with smaller cost, too, and the increasing slopes of all internal sets

remain nonpositive since their cost is the same as before. With respect to the optimal solution of

the original LMCKE instance, ∆P is equal to ew− az, and ∆f is equal to -(w+ z). Therefore, the

“equivalent” ratio ∆P
∆f is equal to

az−ew
w+z . Assume that the ratio of Option E, when applied to the

optimal solution of the original LMCKE instance, is smaller than the ratio of Option C, i.e., that

−e < an−em
m+n ⇒ −em− en < an− em⇐⇒ −e < a. Then, the ratio of Option E is also smaller than

the “equivalent” ratio, since −e < az−ew
w+z becomes −ew − ez < az − ew ⇒ −e < a, which holds

from above. If the ratio of Option E is not smaller than the ratio of Option C, we have −e ≥ a.

Then, the “equivalent” ratio can not be smaller than the ratio of Option C, since an−em
m+n > az−ew

w+z

becomes anw+anz−emw−emz > amz+anz−emw−enw ⇐⇒ nw(a+e) > mz(a+e), which is a

contradiction for subcase 3c, since a+ e ≤ 0. If the resource residual at the optimal solution of the
original LMCKE instance is equal to 0, then this solution is superoptimal for the modified LMCKE

instance, because it requires an extra resource amount equal to n(L0−L)−m(U −U 0). Therefore,
the optimal solution can be obtained by decreasing the cost of the non-lower set with the minimum

decreasing slope by this amount. If this slope is equal to u, ∆P is equal to ew− az− u(nw−mz),

and ∆f is equal to -(w + z). Therefore, the “equivalent” ratio ∆P
∆f is equal to (nu−e)w+(a−mu)z

w+z .

Assume that the ratio of Option B, when applied to the optimal solution of the original LMCKE

instance with the same decreasing set, is smaller than the ratio of Option C, i.e. that nu − e <
an−em
m+n ⇒ mnu − em + n2u − en < an − em ⇐⇒ a + e > u(m + n) ⇒ u < a+e

m+n . Then, the ratio

of Option B is also smaller than the “equivalent” ratio, since nu − e < (nu−e)w+(a−mu)z
w+z becomes

nuw − ew + nuz − ez < nuw − ew + az − muz ⇐⇒ a + e > u(m + n) ⇒ u < a+e
m+n , which

holds from above. If the ratio of Option B is not smaller than the ratio of Option C, we have

u ≥ a+e
m+n . In this case, the “equivalent” ratio can not be smaller than the ratio of Option C, since

an−em
m+n > (nu−e)w+(a−mu)z

w+z becomes anw + anz − emw − emz > mnuw + n2uw − emw − enw +

amz + anz −m2uz −mnuz ⇐⇒ anw −mnuw − n2uw + enw > emz + amz −m2uz −mnuz ⇐⇒
nw(a+ e−mu− nu) > mz(a+ e−mu − nu). Since u ≥ a+e

m+n , the quantity in the parenthesis is

nonpositive; therefore, this is a contradiction for subcase 3c. Note that the optimal solution of the

modified LMCKE instance does not change when we add the constraints Ck ≥ L0 and Ck ≤ U 0.
Additionally, the solution at hand satisfies all the constraints of the modified LMCKE instance,

since the costs of all sets lie in an interval [L0, U 0], whose width does not exceed f 0. Therefore, the
current solution is optimal for the modified LMCKE instance. Since we can also reach the optimal

solution through the application of one of the options B, C or E, one of the five options always

leads to the minimum marginal decrease in P per unit decrease in f in subcase 3c. ¤
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